Câu hỏi:

04/07/2023 464

Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng I cách đều ba đỉnh A, B, C.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác đều ABC có I là điểm cách đều ba cạnh AB, BC, CA. Chứng minh rằng  (ảnh 1)

Gọi M, N, P lần lượt là hình chiếu của I trên BC, AC, AB.

Khi đó IM = IN = IP.

+) Chứng minh I cách đều ba đỉnh của tam giác ABC.

Xét ∆AIP và ∆AIN có:

\(\widehat {API} = \widehat {AQI} = 90^\circ \)

AI là cạnh chung,

IP = IN (cmt)

Do đó ∆AIP = ∆AIN (cạnh huyền – cạnh góc vuông)

Suy ra AP = AN (hai cạnh tương ứng) và \(\widehat {PAI} = \widehat {NAI}\) (hai góc tương ứng)

 Do đó AI là tia phân giác của góc BAC.

Mà \(\widehat {BAC} = 60^\circ \) (do tam giác ABC đều).

Nên \(\widehat {PAI} = \widehat {NAI} = 30^\circ \)

Xét ∆API vuông tại P có:

\(\widehat {PAI} + \widehat {PIA} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°).

Suy ra \(\widehat {PIA} = 90^\circ - \widehat {PAI} = 90^\circ - 30^\circ = 60^\circ \)

Chứng minh tương tự ta có: \(\widehat {PIB} = 60^\circ \)

Xét ∆PIA và ∆PIB có:

\(\widehat {API} = \widehat {BPI} = 90^\circ \)

PI là cạnh chung

\(\widehat {PIA} = \widehat {PIB}\) (cùng bằng 60°)

Do đó ∆PIA = ∆PIB (cạnh góc vuông – góc nhọn kề).

Suy ra IA = IB (hai cạnh tương ứng)

Chứng minh tương tự ta cũng có IB = IC.

Do đó IA = IB = IC nên I cách đều ba đỉnh của tam giác ABC.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một nhóm học sinh có 6 bạn nam và 5 bạn nữ có bao nhiêu cách chọn ra 5 bạn trong đó có cả nam và nữ?

Xem đáp án » 04/07/2023 9,945

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, I là trung điểm cạnh SC. Khẳng định nào sau đây là sai?

A. Đường thẳng IO song song với mặt phẳng (SAD);

B. Mặt phẳng (IBD) cắt hình chóp S.ABCD theo thiết diện là một tứ giác;

C. Đường thẳng IO song song với mặt phẳng (SAB);

D. Giao tuyến của hai mặt phẳng (IBD) và (SAC) là IO.

Xem đáp án » 04/07/2023 8,519

Câu 3:

Cho tam giác ABC có AB = 2; AC = 3; \(\widehat A = 60^\circ \). Tính độ dài cạnh BC.

Xem đáp án » 04/07/2023 5,648

Câu 4:

Chứng minh rằng n4 + 2n3 – n2 – 2n chia hết cho 24 với mọi số nguyên n.

Xem đáp án » 04/07/2023 4,522

Câu 5:

Tìm nghiệm nguyên dương của phương trình: \(\frac{1}{x} + \frac{1}{y} + \frac{1}{{6xy}} = \frac{1}{6}\).

Xem đáp án » 04/07/2023 3,476

Câu 6:

Cho hình chóp S ABCD có đáy ABCD là hình bình hành với O là giao điểm hai đường chéo. Gọi M, N lần lượt là trung điểm SA và SD. Chứng minh ba đường thẳng SO, BN, CM đồng quy.

Xem đáp án » 04/07/2023 2,111

Câu 7:

Cho góc nhọn xOy. Trên tia Ox lấy hai điểm A, C, trên tia Oy lấy hai điểm B, D sao cho OA = OB; OC = OD (A nằm giữa O và C; B nằm giữa O và D). So sánh \(\widehat {CAD}\)\(\widehat {CBD}\).

Xem đáp án » 04/07/2023 1,948

Bình luận


Bình luận