Câu hỏi:
04/07/2023 2,072
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua 3 điểm M,N,P có phương trình: (T) \({\left( {x - 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{25}}{4}\). Tìm phương trình đường tròn ngoại tiếp tam giác ABC.
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có trực tâm O . Gọi M là trung điểm của BC; N, P lần lượt là chân đường cao kẻ từ B và C. Đường tròn đi qua 3 điểm M,N,P có phương trình: (T) \({\left( {x - 1} \right)^2} + {\left( {y + \frac{1}{2}} \right)^2} = \frac{{25}}{4}\). Tìm phương trình đường tròn ngoại tiếp tam giác ABC.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Đường tròn ngoại tiếp tam giác ABC là ảnh của đường tròn (T) qua phép vị tự tâm O tỉ số k = 2
Do đó, phương trình đường tròn ngoại tiếp tam giác:
(x – 2)2 + (y + 1)2 = 25
Vậy phương trình đường tròn ngoại tiếp cần tìm là (x – 2)2 + (y + 1)2 = 25.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn 5 học sinh tùy ý trong 11 học sinh có số cách là: \(C_{11}^5\)
\( \Rightarrow n\left( \Omega \right) = 462\)
Gọi A là biến cố chọn ra 5 học sinh trong đó có cả nam và nữ.
Khi đó \(\overline A \) là biến cố chọn ra 5 học sinh trong đó tất cả là nữ hoặc tất cả là nam.
Suy ra n(\(\overline A \)) = \(C_6^5 + C_5^5 = 6 + 1 = 7\) (Cách)
\( \Rightarrow n(A) = n\left( \Omega \right) - n\left( {\overline A } \right) = 462 - 7 = 455\) (cách)
Vậy có 455 cách chọn ra 5 học sinh trong đó có cả nữ và nam.
Lời giải
Đáp án đúng là: B

Ta có: IO//SA ⇒ IO//(SAD) và IO//(SAB) nên đáp án A và đáp án C đúng.
Ta có (SAC) ∩ (IBD) = IO nên đáp án D đúng.
Câu B ta có thiết diện là ∆IBD nên B sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.