Câu hỏi:

04/07/2023 1,768

Cho p, q là số nguyên tố và phương trình x2  px + q = 0 có nghiệm nguyên dương. Tìm p, q.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Để phương trình đã cho có nghiệm nguyên dương thì Δ = p2 − 4q là số chính phương.

Đặt p2 − 4q = k2 4q = (p − k)(p + k) với k là số tự nhiên.

Do p k, p + k cùng tính chẵn, lẻ mà tích của chúng chẵn nên hai số này cùng chẵn.

Mặt khác p k < p + k và q là số nguyên tố nên:

p k = 2 và p + k = 2q hoặc p k = 4 và p + k = q

Nếu p k = 4 và p + k = q thì q chẵn do đó q = 2 (vô lí vì p + k > p k).

Nếu p k = 2 và p + k = 2q thì 2p = 2q + 2 tức p = q + 1. Do đó q chẵn tức q = 2. Suy ra p = 3.

Thử lại ta thấy phương trình: x2 − 3x + 2= 0 có nghiệm nguyên dương x = 1 và x = 2.

Vậy p = 3; q = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi q(x); g(x) lần lượt là thương của phép chia f(x) cho x – 2; f(x) cho x2 – 1

Þ f(x) = q(x)(x– 2)

Và f(x) = g(x)(x2 – 1) + 2x

Þ f(2) = 8 + 4a + 2b + c = 0

f(1) = 1 + a + b + c = 2

f(–1) = – 1 + a – b + c = –2

Từ các hệ thức trên ta tìm được: 

\[a = \frac{{10}}{3}\]; b = 1; \[c = \frac{{10}}{3}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP