Câu hỏi:

04/07/2023 10,566

Cho tam giác ABC vuông tại A có AB = 8 cm, AC = 6 cm, trung tuyến AM. Kẻ MD vuông góc với AB và Me vuông góc với AC.

a) Tứ giác ADME là hình gì? Vì sao?

b) Tìm điều kiện của tam giác ABC để tứ giác ADME là hình vuông.

c) Tính độ dài AM?

d) Tính diện tích tam giác ABM?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Vì MD AB, ME AC nên \(\widehat {M{\rm{D}}A} = \widehat {ME{\rm{A}}} = 90^\circ \)

Xét tứ giác ADME có \(\widehat {BAC} = \widehat {M{\rm{D}}A} = \widehat {ME{\rm{A}}} = 90^\circ \)

Suy ra ADME là hình chữ nhật

b) Để hình chữ nhật ADME là hình vuông thì AM là tia phân giác của \(\widehat {DA{\rm{E}}}\)

Khi đó tam giác ABC có AM vừa là phân giác vừa là trung tuyến

Nên tam giác ABC cân tại A

Vậy tam giác ABC vuông cân tại A thì ADME là hình vuông

c) Vì tam giác ABC vuông tại A, theo định lý Pytago ta có

BC2 = AB2 + AC2 = 82 + 62 = 100

Suy ra BC = 10 (cm)

Do đó \(AM = \frac{1}{2}BC = \frac{1}{2}.10 = 5\) (cm)

d) Vì MD AB, AB AC nên MD // AC (quan hệ từ vuông góc đến song song)

Xét tam giác ABC có M là trung điểm của BC và MD // AC

Suy ra MD là đường trung bình

Do đó \(M{\rm{D}} = \frac{1}{2}AC\)

Ta có: \(\frac{{{S_{ABM}}}}{{{S_{ABC}}}} = \frac{{\frac{1}{2}M{\rm{D}}.AB}}{{\frac{1}{2}AC.AB}} = \frac{{M{\rm{D}}}}{{AC}} = \frac{1}{2}\)

\[{{\rm{S}}_{ABC}} = \frac{1}{2}AB.AC = \frac{1}{2}.8.6 = 24\] (cm2)

Suy ra SABM = 12 cm2

Vậy SABM = 12 cm2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

Dựng hình bình hành AGCE

Ta có \(\overrightarrow {MA} + \overrightarrow {GC} = \overrightarrow {MA} + \overrightarrow {A{\rm{E}}} = \overrightarrow {ME} \)

Kẻ EF BC (F BC)

Khi đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right| = \left| {\overrightarrow {ME} = ME} \right| \ge EF\)

Do đó \(\left| {\overrightarrow {MA} + \overrightarrow {GC} } \right|\) đạt giá trị nhỏ nhất khi M ≡ F

Gọi P là trung điểm của AC, Q là hình chiếu vuông góc của P lên BC

Vì AGCE là hình bình hành, P là trung điểm của AC

Suy ra P là trung điểm của GE

Do đó \(GP = PE = \frac{1}{2}GE\)

Vì G là trọng tâm tam giác ABC, BP là trung tuyến

Suy ra \(BG = \frac{2}{3}BP,GP = \frac{1}{3}BP\)

Ta có: BE = BP + PE

Hay \(BE = BP + \frac{1}{3}BP = \frac{4}{3}BP\)

Xét ∆BPQ và ∆BEF có

\(\widehat {FBE}\) là góc chung;

\(\widehat {BQP} = \widehat {BF{\rm{E}}}\left( { = 90^\circ } \right)\)

Suy ra (g.g)

Do đó \(\frac{{BP}}{{BE}} = \frac{{BQ}}{{BF}} = \frac{3}{4}\)

Hay \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} \)

Xét DAHC có P là trung điểm của ACAH // PQ (vì cùng vuông góc với BC)

Suy ra Q là trung điểm của CH

Hay \(\overrightarrow {HQ} = \frac{1}{2}\overrightarrow {HC} \)

\(\overrightarrow {BH} = \frac{1}{3}\overrightarrow {HC} \)

Ta có \(\overrightarrow {BQ} = \overrightarrow {BH} + \overrightarrow {HQ} = \frac{1}{3}\overrightarrow {HC} + \frac{1}{2}\overrightarrow {HC} = \frac{5}{6}\overrightarrow {HC} = \frac{5}{6}.\frac{3}{4}\overrightarrow {BC} = \frac{5}{8}\overrightarrow {BC} \)

Do đó \(\overrightarrow {BF} = \frac{4}{3}\overrightarrow {BQ} = \frac{5}{6}\overrightarrow {BC} \)

Vậy \[{\rm{x}} = \frac{5}{6}\] thì độ dài của \(\overrightarrow {MA} + \overrightarrow {GC} \) đạt giá trị nhỏ nhất.

Lời giải

Lời giải

Media VietJack

a) Xét tam giác ABC có O, I lần lượt là trung điểm của AB, AC

Suy ra OI là đường trung bình

Do đó OI // BC

b) Vì C thuộc đường tròn đường kính AB nên tam giác ABC nội tiếp (O)

Suy ra tam giác ABC vuông tại C

Xét (O) có AC là dây cung; I là trung điểm của AC

Suy ra OI là trung trực của AC

Mà D OI nên DA = DC

Xét ∆ADO và ∆CDO có

DA = DC (chứng minh trên)

DO là cạnh chung

OA = OC

Suy ra ∆ADO = ∆CDO (c.c.c)

Do đó \(\widehat {A{\rm{D}}O} = \widehat {AC{\rm{O}}}\) (hai góc tương ứng)

\(\widehat {AC{\rm{O}}} = 90^\circ \) nên \(\widehat {A{\rm{D}}O} = 90^\circ \), hay AO AD

Mà AO là bán kính của (O)

Do đó DA là tiếp tuyến của đường tròn tâm O

c) Ta có CO CD, BK CD

Suy ra CO // BK (quan hệ từ vuông góc đến song song)

Do đó \(\widehat {OCB} = \widehat {CBK}\) (hai góc so le trong)

\(\widehat {CBO} = \widehat {OCB}\) nên \(\widehat {CBO} = \widehat {CKB}\)

Xét ∆BCH và ∆BCK có

\(\widehat {BHC} = \widehat {BKC}\left( { = 90^\circ } \right)\);

BC là cạnh chung;

\(\widehat {CBO} = \widehat {CKB}\) (chứng minh trên)

Suy ra ∆BCH = ∆BCK (cạnh huyền – góc nhọn)

Do đó CH = CK

Xét tam giác ABC vuông tại C có CH AB, theo hệ thức lượng trong tam giác vuông ta có CH2 = HA . HB

Suy ra CK2 = HA . HB.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Trong các hình sau : hình vuông, hình bình hành, hình chữ nhật; hình thang cân. Những hình nào có hai đường chéo bằng nhau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay