Câu hỏi:
13/07/2024 13,896
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Cho hình vuông ABCD có AC cắt BD tại O. M là điểm bất kỳ thuộc cạnh BC (M khác B, C). Tia AM cắt đường thẳng CD tại N. Trên cạnh AB lấy điểm E sao cho BE = CM.
a) Chứng minh: ∆OEM vuông cân.
b) Chứng minh: ME // BN.
c) Từ C kẻ CH vuông góc BN (H thuộc BN). Chứng minh rằng ba điểm O, M, H thẳng hàng.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

a) Xét ∆OEB và ∆OMC
Vi ABCD là hình vuông nên ta có: OB = OC
Và \[\widehat B = \widehat C = 45^\circ \]
BE = CM (gt)
Þ ∆OEB = ∆OMC (c.g.c)
Þ OE = OM và \({\widehat O_1} = {\widehat O_3}\)
Lại có: \({\widehat O_1} + {\widehat O_2} = \widehat {BOC} = 90^\circ \) vì tứ giác ABCD là hình vuông
\({\widehat O_1} + {\widehat O_2} = \widehat {EOM} = 90^\circ \) kết hợp với OE = OM
Þ ∆OEM vuông cân tại O.
b) Tứ giác ABCD là hình vuông Þ AB = CD và AB // CD
AB // CD Þ AB // CN \( \Rightarrow \frac{{AM}}{{MN}} = \frac{{BM}}{{MC}}\) (Theo định lý Ta-lét) (*)
Mà BE = CM (gt) và AB = CD Þ AE = BM thay vào (*)
Ta có: \[\frac{{AM}}{{MN}} = \frac{{AE}}{{EB}} \Rightarrow ME\;{\rm{//}}\;BN\] (theo định lý đảo Ta-lét)
c) Gọi H¢ là giao điểm của OM và BN
Từ ME // BN \[ \Rightarrow \widehat {OME} = \widehat {OH'E}\] (Cặp góc ở vị trí so le trong)
Mà \[\widehat {OME} = 45^\circ \] vì ∆OME vuông cân tại O
\( \Rightarrow \widehat {MH'B} = 45^\circ = \widehat {{C_1}}\)
Þ ∆OMC = ∆BMH¢ (g.g)
\( \Rightarrow \frac{{OM}}{{OB}} = \frac{{MH'}}{{MC}}\), kết hợp \( \Rightarrow \widehat {OMB} = \widehat {CMH'}\) (hai góc đối đỉnh)
Þ ∆OMB = ∆CMH¢ (c.g.c) \( \Rightarrow \widehat {OBM} = \widehat {MH'C} = 45^\circ \)
Vậy \(\widehat {BH'C} + \widehat {BH'M} + \widehat {MH'C} = 90^\circ \Rightarrow CH' \bot BN\)
Mà CH ^ BN (H Î BN) Þ H = H¢ hay 3 điểm O, M, H thẳng hàng (đpcm).
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: cos x = − cos (180° − x) Þ cos2 x = cos2 (180° − x)
sin x = cos (90° − x)
sin2 x + cos2 x = 1
A = cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + cos2 30° + ... + cos2 180°
= cos2 10° + cos2 20° + ... + cos2 80° + cos2 90° + cos2 80° + cos2 70° + ... + cos2 0°
= cos2 0° + cos2 90° + 2(cos2 10° + cos2 20° + ... + cos2 80°)
= 1 + 0 + 2(cos2 10° + cos2 20° + cos2 30° + cos2 40° + sin2 40° + sin2 30° + sin2 20° + sin2 10°)
= 1 + 0 + 2 . 4 = 9.
Lời giải
Gọi số tự nhiên có 3 chữ số là \(\overline {abc} \;\,\,\left( {a \ne 0;\;a \ne b \ne c} \right)\).
Theo đề, ta có a + b + c = 18
Þ (a; b; c) = {(1; 8; 9); (2; 7; 9); (3; 6; 9); (4; 5; 9); (3; 7; 8); (4; 6; 8); (5; 6; 7)}.
Vậy số tự nhiên có 3 chữ số mà tổng bằng 18 là 7.3! = 42 (số).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.