Câu hỏi:
12/07/2024 300Cho nửa đường tròn tâm O bán kính R đường kính AB. Gọi Ax, By là các tia tiếp tuyến của nửa đường tròn và thuộc cùng 1 nửa mặt phẳng có chứa nửa đường tròn. Qua M thuộc nửa đường tròn vẽ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C, D. Chứng minh rằng CD = AC + BD, \[\widehat {COD} = 90^\circ \].
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Do CA và CM là hai tiếp tuyến cắt nhau nên CA = CM
Do DM và DB là hai tiếp tuyến cắt nhau nên DM = DB
Suy ra CD = CM + MD = CA + DB (đpcm)
Ta có: \[{\widehat O_1} = {\widehat O_2}\] (tính chất 2 tiếp tuyến cắt nhau)
và \[{\widehat O_3} = {\widehat O_4}\] (tính chất 2 tiếp tuyến cắt nhau)
\[ \Rightarrow \widehat {COD} = {\widehat O_2} + {\widehat O_3} = \frac{1}{2}\left( {{{\widehat O}_1} + {{\widehat O}_2} + {{\widehat O}_3} + {{\widehat O}_4}} \right) = 90^\circ \]
Vậy CD = AC + BD, \[\widehat {COD} = 90^\circ \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.
Câu 2:
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Câu 4:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Câu 6:
Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].
Câu 7:
Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].
về câu hỏi!