Câu hỏi:

12/07/2024 406

Cho ∆ABC cân tại A, đường trung tuyến CM. Trên tia đối của tia BA lấy điểm D sao cho BD = AB. Chứng minh CD = 2CM.

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC cân tại A, đường trung tuyến CM. Trên tia đối của tia BA lấy điểm D  (ảnh 1)

Gọi N là trung điểm cạnh AC

\[ \Rightarrow AN = \frac{1}{2}AC\]

\[ \Rightarrow AM = AN = \frac{1}{2}AB\](vì AB = AC)

Xét ΔABN và ΔACM có:

AB = AC

\[\widehat A\] chung

AM = AN

Do đó ΔABN = ΔACM (c.g.c)

Suy ra BN = CM (hai cạnh tương ứng)

Vì ΔABC là tam giác cân tại A nên dễ dàng chứng minh được BN = CM

Xét ΔACD có B, N lần lượt là trung điểm cạnh AD và AC.

Suy ra BN là đường trung bình của tam giác của ΔACD.

\[ \Rightarrow BN = \frac{1}{2}DC\]

 DC = 2BN (2)

Từ (1) và (2) suy ra CD = 2CM

Vậy CD = 2CM.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.

Xem đáp án » 13/07/2024 26,706

Câu 2:

Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A B; A ∩ B; A \ B; B \ A.

Xem đáp án » 13/07/2024 12,589

Câu 3:

Cho A = [−4; 7], B = (−∞; −2) (3; +∞). Tìm A ∩ B.

Xem đáp án » 13/07/2024 5,701

Câu 4:

Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?

Xem đáp án » 13/07/2024 4,237

Câu 5:

Chứng minh rằng a5 – a chia hết cho 30.

Xem đáp án » 13/07/2024 3,166

Câu 6:

Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].

Xem đáp án » 13/07/2024 2,839

Câu 7:

Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].

Xem đáp án » 13/07/2024 2,420

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store