Câu hỏi:

13/07/2024 265

Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E sao cho DE = BD. Gọi M, N lần lượt là trung điểm của BC, CE. Gọi I, K lần lượt là giao điểm của AM, AN với BE. Chứng minh BI = IK = KE.

Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tam giác ABC có đường trung tuyến BD. Trên tia đối của tia DB lấy điểm E  (ảnh 1)

Xét tam giác ABC có BD và AM là các đường trung tuyến, BD cắt AM tại I.

Suy ra I là trọng tâm của tam giác ABC

Nên \[BI = \frac{2}{3}BD\,\,(1)\]

Xét tam giác AEC có ED và AN là các đường trung tuyến, ED cắt AN tại K.

Suy ra K là trọng tâm của tam giác AEC.

Nên \[EK = \frac{2}{3}ED\,\,(2)\] 

Mặt khác BD = DE, DB + DE = BE

Nên \[BD = DE = \frac{1}{2}BE\,\,\](3)

Từ (1), (2) và (3) ta có:

\[BI = EK = \frac{2}{3}BD = \frac{2}{3} \cdot \frac{1}{2}BE\,\, = \frac{1}{3}BE\]

Ta lại có: BI + IK + KE = BE

\[\, \Rightarrow \frac{1}{3}BE + IK + \frac{1}{3}BE = BE\]

\[ \Rightarrow IK = \frac{1}{3}BE\]

Do đó BI = IK = EK (cùng bằng \[\frac{1}{3}BE\])

Vậy BI = IK = EK.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.

Xem đáp án » 13/07/2024 28,003

Câu 2:

Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A B; A ∩ B; A \ B; B \ A.

Xem đáp án » 13/07/2024 13,284

Câu 3:

Cho A = [−4; 7], B = (−∞; −2) (3; +∞). Tìm A ∩ B.

Xem đáp án » 13/07/2024 6,217

Câu 4:

Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?

Xem đáp án » 13/07/2024 4,429

Câu 5:

Chứng minh rằng a5 – a chia hết cho 30.

Xem đáp án » 13/07/2024 3,822

Câu 6:

Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].

Xem đáp án » 13/07/2024 3,164

Câu 7:

Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].

Xem đáp án » 13/07/2024 2,503

Bình luận


Bình luận