Câu hỏi:

05/07/2023 240

Cho ngũ giác đều ABCDE có tâm là điểm O. Chứng minh rằng: \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} = \overrightarrow 0 \].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đặt \[\overrightarrow u = \overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} \]

Ta có: \[\overrightarrow u = \overrightarrow {OA} + \left( {\overrightarrow {OB} + \overrightarrow {OE} } \right) + \left( {\overrightarrow {OC} + \overrightarrow {OD} } \right)\].

Do OA nằm trên đường phân giác của \[\widehat {BOE}\] và \[\widehat {DOC}\] của hai tam giác cân BOE và DOC nên ta có các \[\overrightarrow {OB} + \overrightarrow {OE} \] và \[\overrightarrow {OC} + \overrightarrow {OD} \] nằm trên đường thẳng OA

Þ \[\overrightarrow u \] nằm trên đường thẳng OA.

Chứng minh tương tự ta có \[\overrightarrow u \]cũng đồng thời nằm trên đường thẳng OB.

Mà OA và OB không cùng phương nên \[\overrightarrow u = \overrightarrow 0 \].

Vậy \[\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} + \overrightarrow {OD} + \overrightarrow {OE} = \overrightarrow 0 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: sin x + cos x = m

(sin x + cos x)2 = m2

sin2 x + 2sin x.cos x + cos2x = m2

(sin2 x + cos2 x) + 2sin x.cos x = m2

1 + 2sin x.cos x = m2

\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]

\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]

Vậy \[M = \frac{{{m^2} - 1}}{2}\].

Lời giải

A B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP