Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm b sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh: ∆AOI = ∆BOI.
Cho góc nhọn xOy và tia phân giác Oz của góc đó. Trên Ox lấy điểm A, trên Oy lấy điểm b sao cho OA = OB. Trên Oz lấy điểm I. Chứng minh: ∆AOI = ∆BOI.
Quảng cáo
Trả lời:


Vì Oz là phân giác của \[\widehat {xOy}\] nên \[\widehat {xOz} = \widehat {yOz} = \frac{1}{2}\widehat {xOy}\]
Xét ΔAOI và ΔBOI có:
OA = OB (gt)
\[\widehat {AOI} = \widehat {BOI}\] (cmt)
OI là cạnh chung
Do đó ΔAOI = ΔBOI (c.g.c)
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: sin x + cos x = m
⇔ (sin x + cos x)2 = m2
⇔ sin2 x + 2sin x.cos x + cos2x = m2
⇔ (sin2 x + cos2 x) + 2sin x.cos x = m2
⇔ 1 + 2sin x.cos x = m2
\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]
\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]
Vậy \[M = \frac{{{m^2} - 1}}{2}\].
Lời giải
A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.