Câu hỏi:
12/07/2024 418Đồ thị hàm số y = ax3 + bx2 + cx + d có hai điểm cực trị là A (1; −7 ); B (2; −8). Tính y (−1).
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đồ thị hàm số đi qua A và B nên:
\[\left\{ \begin{array}{l}a + b + c + d = - 7\\8a + 4b + 2c + d = - 8\end{array} \right.\]
\[ \Leftrightarrow \left\{ \begin{array}{l}d = - 7 - a - b - c\\7a + 3b + c = - 1\end{array} \right.\] (1)
Ta có y ′ = 3ax2 + 2bx + c có 2 nghiệm x = 1 và x = 2 nên
\[\left\{ \begin{array}{l}3a + 2b + c = 0\,\,\,\,(2)\\12a + 4b + c = 0\,\,\,\,(3)\end{array} \right.\]
Từ (1), (2), (3) ta có a = 2; b = −9; c = 12 Þ d = −12
Khi đó y (−1) = −a + b − c + d = −35
Vậy y (−1) = −35.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.
Câu 2:
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Câu 4:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Câu 6:
Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].
Câu 7:
Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].
về câu hỏi!