Câu hỏi:
12/07/2024 330
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M,N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB. Chứng minh: Tứ giác AMCN là hình bình hành.
Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo M,N là trung điểm của OD và OB. Gọi E là giao điểm của AM và CD. F là giao điểm của CN và AB. Chứng minh: Tứ giác AMCN là hình bình hành.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Ta có ABCD là hình bình hành
Þ AC Ç BD tại trung điểm của mỗi đường
Mà AC Ç BD = O
Þ O là trung điểm AC, DB
Lại có M, N là trung điểm OD, OB
\[ \Rightarrow OM = \frac{1}{2}OD = \frac{1}{2}OB = ON\]
Þ O là trung điểm MN
Do O là trung điểm của AC, MN
Þ AMCN là hình bình hành
Vậy AMCN là hình bình hành.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: sin x + cos x = m
⇔ (sin x + cos x)2 = m2
⇔ sin2 x + 2sin x.cos x + cos2x = m2
⇔ (sin2 x + cos2 x) + 2sin x.cos x = m2
⇔ 1 + 2sin x.cos x = m2
\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]
\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]
Vậy \[M = \frac{{{m^2} - 1}}{2}\].
Lời giải
A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.