Câu hỏi:

13/07/2024 3,862

Năm 2020, số dân của một thành phố trực thuộc tỉnh là khoảng 500 nghìn người. Người ta ước tính rằng số dân của thành phố đó sẽ tăng trưởng với tốc độ khoảng 2% mỗi năm. Khi đó số dân Pn (nghìn người) của thành phố đó sau n năm, kể từ năm 2020, được tính bằng công thức Pn = 500(1 + 0,02)n. Hỏi nếu tăng trưởng theo quy luật như vậy thì vào năm 2030, số dân của thành phố đó là khoảng bao nhiêu nghìn người?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Sau bài học này ta sẽ giải quyết được bài toán trên như sau:

Ta có: n = 2030 – 2020 = 10.

Vậy số dân của thành phố đó vào năm 2030 sẽ là

P10 = 500 . (1 + 0,02)10 ≈ 609 (nghìn người).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n *.

Do đó, dãy số (un) bị chặn dưới với mọi n *.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n *.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n *.

Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), n * nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) n *.

Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n *.

Do đó, – 1 ≤ un ≤ 1 với mọi n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n * và n lẻ.

(– 1)n – 1 = – 1 với mọi n * và n chẵn.

n2 ≥ 0 với mọi n *.

Do đó, un = – n2 < 0, với mọi n * và n chẵn.

           un = n2 > 0, với mọi n * và n lẻ.

Vậy dãy số (un) không bị chặn.  

Lời giải

Lời giải:

a) Năm số hạng đầu của dãy số là

u1 = 1;

u2 = 2u1 = 2 . 1 = 2;

u3 = 3u2 = 3 . 2 = 6;

u4 = 4u3 = 4 . 6 = 24;

u5 = 5u4 = 5 . 24 = 120.

b) Nhận xét thấy u1 = 1 = 1!;

u2 = 2 . 1 = 2!;

u3 = 3u2 = 3 . 2 . 1 = 3!;

u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;

u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;

...

Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay