Câu hỏi:

12/07/2024 1,604

a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.

b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là

0; 1; 4; 9; 16; 25; 36; 49.

b) Ta có: un = (n – 1)2 với n * và n ≤ 8.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n *.

Do đó, dãy số (un) bị chặn dưới với mọi n *.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n *.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n *.

Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), n * nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) n *.

Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n *.

Do đó, – 1 ≤ un ≤ 1 với mọi n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n * và n lẻ.

(– 1)n – 1 = – 1 với mọi n * và n chẵn.

n2 ≥ 0 với mọi n *.

Do đó, un = – n2 < 0, với mọi n * và n chẵn.

           un = n2 > 0, với mọi n * và n lẻ.

Vậy dãy số (un) không bị chặn.  

Lời giải

Lời giải:

a) Năm số hạng đầu của dãy số là

u1 = 1;

u2 = 2u1 = 2 . 1 = 2;

u3 = 3u2 = 3 . 2 = 6;

u4 = 4u3 = 4 . 6 = 24;

u5 = 5u4 = 5 . 24 = 120.

b) Nhận xét thấy u1 = 1 = 1!;

u2 = 2 . 1 = 2!;

u3 = 3u2 = 3 . 2 . 1 = 3!;

u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;

u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;

...

Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP