Câu hỏi:
12/07/2024 1,604
a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.
b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.
a) Liệt kê tất cả các số chính phương nhỏ hơn 50 và sắp xếp chúng theo thứ tự từ bé đến lớn.
b) Viết công thức số hạng un của các số tìm được ở câu a) và nêu rõ điều kiện của n.
Câu hỏi trong đề: Giải SGK Toán 11 KNTT Bài 5. Dãy số có đáp án !!
Quảng cáo
Trả lời:
Lời giải:
a) Các số chính phương nhỏ hơn 50 được sắp xếp theo thứ tự từ bé đến lớn là
0; 1; 4; 9; 16; 25; 36; 49.
b) Ta có: un = (n – 1)2 với n ∈ ℕ* và n ≤ 8.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
a) Ta có: un = n – 1 ≥ 0 với mọi n ∈ ℕ*.
Do đó, dãy số (un) bị chặn dưới với mọi n ∈ ℕ*.
Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:
un = n – 1 ≤ M với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.
b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n ∈ ℕ*.
Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), ∀ n ∈ ℕ* nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) ∀ n ∈ ℕ*.
Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) ∀ n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n ∈ ℕ*.
Do đó, – 1 ≤ un ≤ 1 với mọi n ∈ ℕ*.
Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.
d) un = (– 1)n – 1 n2
Ta có: (– 1)n – 1 = 1 với mọi n ∈ ℕ* và n lẻ.
(– 1)n – 1 = – 1 với mọi n ∈ ℕ* và n chẵn.
n2 ≥ 0 với mọi n ∈ ℕ*.
Do đó, un = – n2 < 0, với mọi n ∈ ℕ* và n chẵn.
un = n2 > 0, với mọi n ∈ ℕ* và n lẻ.
Vậy dãy số (un) không bị chặn.
Lời giải
Lời giải:
a) Năm số hạng đầu của dãy số là
u1 = 1;
u2 = 2u1 = 2 . 1 = 2;
u3 = 3u2 = 3 . 2 = 6;
u4 = 4u3 = 4 . 6 = 24;
u5 = 5u4 = 5 . 24 = 120.
b) Nhận xét thấy u1 = 1 = 1!;
u2 = 2 . 1 = 2!;
u3 = 3u2 = 3 . 2 . 1 = 3!;
u4 = 4u3 = 4 . 3 . 2 . 1 = 4!;
u5 = 5u4 = 5 . 4 . 3 . 2 . 1 = 5!;
...
Cứ tiếp tục làm như thế, ta dự đoán được công thức số hạng tổng quát của un là un = n!.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.