Câu hỏi:
12/07/2024 842Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc \[\widehat A;\widehat B\] bằng nửa tổng hai góc \[\widehat C;\widehat D\], đường chéo AC vuông góc với hai cạnh bên BC. Tính các góc hình thang ABCD.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Theo đề ta có: \[\widehat A + \widehat B = \frac{1}{2}\left( {\widehat C + \widehat D} \right)\]
\[ \Rightarrow 2\widehat B = \frac{1}{2} \cdot 2\widehat C\] (do ABCD là hình thang cân) (1)
Mà \[\widehat B + \widehat C = 180^\circ \] (hai góc ở vị trí trong cùng phía) (2)
Từ (1) và (2) suy ra \[\widehat B + 2\widehat B = 180^\circ \]
\[ \Rightarrow \widehat B = 60^\circ \]
\[ \Rightarrow \widehat C = 120^\circ \]
Vậy \[\widehat A = \widehat B = 60^\circ \]; \[\widehat C = \widehat D = 120^\circ \].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.
Câu 2:
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Câu 4:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Câu 6:
Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].
Câu 7:
Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].
về câu hỏi!