Câu hỏi:
05/07/2023 218
Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc \[\widehat A;\widehat B\] bằng nửa tổng hai góc \[\widehat C;\widehat D\], đường chéo AC vuông góc với hai cạnh bên BC. Chứng minh AC là phân giác của \[\widehat {DAB}\].
Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc \[\widehat A;\widehat B\] bằng nửa tổng hai góc \[\widehat C;\widehat D\], đường chéo AC vuông góc với hai cạnh bên BC. Chứng minh AC là phân giác của \[\widehat {DAB}\].
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Theo đề ta có:
\[\widehat A + \widehat B = \frac{1}{2}\left( {\widehat C + \widehat D} \right)\]
\[ \Rightarrow 2\widehat B = \frac{1}{2} \cdot 2\widehat C\] (do ABCD là hình thang cân) (1)
Mà \[\widehat B + \widehat C = 180^\circ \] (hai góc ở vị trí trong cùng phía) (2)
Từ (1) và (2) suy ra \[\widehat B + 2\widehat B = 180^\circ \]
\[ \Rightarrow \widehat B = 60^\circ \]
Ta có: AC ^ BC
\[ \Rightarrow \widehat {ACB} = 90^\circ \]
\[ \Rightarrow \widehat {CAB} = 90^\circ - \widehat B = 90^\circ - 60^\circ = 30^\circ \]
Lại có:
\[\widehat {DAC} = \widehat A - \widehat {CAB} = 60^\circ - 30^\circ = 30^\circ \]
\[ \Rightarrow \widehat {DAC} = \widehat {CAB} = 30^\circ \]
Vậy AC là phân giác của \[\widehat {DAB}\].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: sin x + cos x = m
⇔ (sin x + cos x)2 = m2
⇔ sin2 x + 2sin x.cos x + cos2x = m2
⇔ (sin2 x + cos2 x) + 2sin x.cos x = m2
⇔ 1 + 2sin x.cos x = m2
\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]
\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]
Vậy \[M = \frac{{{m^2} - 1}}{2}\].
Lời giải
A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.