Câu hỏi:

05/07/2023 218

Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc \[\widehat A;\widehat B\] bằng nửa tổng hai góc \[\widehat C;\widehat D\], đường chéo AC vuông góc với hai cạnh bên BC. Chứng minh AC là phân giác của \[\widehat {DAB}\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình thang cân ABCD, đáy nhỏ CD = a, tổng hai góc A, góc B bằng nửa tổng hai góc (ảnh 1)

Theo đề ta có:

\[\widehat A + \widehat B = \frac{1}{2}\left( {\widehat C + \widehat D} \right)\]

\[ \Rightarrow 2\widehat B = \frac{1}{2} \cdot 2\widehat C\] (do ABCD là hình thang cân) (1)

Mà \[\widehat B + \widehat C = 180^\circ \] (hai góc ở vị trí trong cùng phía) (2)

Từ (1) và (2) suy ra \[\widehat B + 2\widehat B = 180^\circ \]

\[ \Rightarrow \widehat B = 60^\circ \]

Ta có: AC ^ BC

\[ \Rightarrow \widehat {ACB} = 90^\circ \]

\[ \Rightarrow \widehat {CAB} = 90^\circ - \widehat B = 90^\circ - 60^\circ = 30^\circ \]

Lại có:

\[\widehat {DAC} = \widehat A - \widehat {CAB} = 60^\circ - 30^\circ = 30^\circ \]

\[ \Rightarrow \widehat {DAC} = \widehat {CAB} = 30^\circ \]

Vậy AC là phân giác của \[\widehat {DAB}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: sin x + cos x = m

(sin x + cos x)2 = m2

sin2 x + 2sin x.cos x + cos2x = m2

(sin2 x + cos2 x) + 2sin x.cos x = m2

1 + 2sin x.cos x = m2

\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]

\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]

Vậy \[M = \frac{{{m^2} - 1}}{2}\].

Lời giải

A B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.

A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.

A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.

B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP