Câu hỏi:
12/07/2024 124Cho hình thang vuông ABCD (\[\widehat A = \widehat D = 90^\circ \]). E là trung điểm của AD và \[\widehat {BEC} = 90^\circ \]. Cho biết AD = 2a. Chứng minh rằng: ΔEAB đồng dạng ΔCEB.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Xét ΔAEB và ΔDCE, ta có:
\[\widehat {EAB} = \widehat {CDE} = 90^\circ \]
\[\widehat {AEB} = \widehat {DCE}\] (cùng phụ \[\widehat {DEC}\])
Þ ΔEAB ᔕ ΔCDE (g.g)
\[ \Rightarrow \frac{{DE}}{{DC}} = \frac{{EB}}{{CE}} \Leftrightarrow \frac{{CE}}{{DC}} = \frac{{EB}}{{DE}}\]
Xét ΔCEB và ΔCDE, ta có:
\[\frac{{CE}}{{DC}} = \frac{{EB}}{{DE}}\]
\[\widehat {CEB} = \widehat {CDE} = 90^\circ \]
Þ ΔCEB ᔕ ΔCDE (c.g.c)
Mà ΔEAB ᔕ ΔCDE
Nên ΔEAB ᔕ ΔCEB
Vậy ΔEAB ᔕ ΔCEB.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.
Câu 2:
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Câu 4:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Câu 6:
Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].
Câu 7:
Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].
về câu hỏi!