Câu hỏi:
05/07/2023 136
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý. Chứng minh rằng: \[\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow 0 \].
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB và O là 1 điểm tùy ý. Chứng minh rằng: \[\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow 0 \].
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:
Ta có trong ΔABC có M là trung điểm của BC và N là trung điểm của AC
Þ PM là đường trung bình của ΔABC
Þ PM // AB và \[PM = \frac{1}{2}AB = NC\]
\[\overrightarrow {PM} = \overrightarrow {NC} \]
Ta có:
• \[\overrightarrow {AM} = \overrightarrow {AP} + \overrightarrow {PM} \]
• \[\overrightarrow {BN} = \overrightarrow {BP} + \overrightarrow {PN} \]
• \[\overrightarrow {CP} = \overrightarrow {CN} + \overrightarrow {NP} \]
\[\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow {AP} + \overrightarrow {PM} + \overrightarrow {BP} + \overrightarrow {PN} + \overrightarrow {CN} + \overrightarrow {NP} \]
\[ = \overrightarrow {AP} + \overrightarrow {BP} + \overrightarrow {PM} + \overrightarrow {CN} \]
\[ = - \left( {\overrightarrow {PA} + \overrightarrow {PB} } \right) + \overrightarrow {CN} + \overrightarrow {NC} \]\[ = \overrightarrow 0 \]
Vậy \[\overrightarrow {AM} + \overrightarrow {BN} + \overrightarrow {CP} = \overrightarrow 0 \].
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có: sin x + cos x = m
⇔ (sin x + cos x)2 = m2
⇔ sin2 x + 2sin x.cos x + cos2x = m2
⇔ (sin2 x + cos2 x) + 2sin x.cos x = m2
⇔ 1 + 2sin x.cos x = m2
\[ \Leftrightarrow \sin x.\cos x = \frac{{{m^2} - 1}}{2}\]
\[ \Rightarrow M = \frac{{{m^2} - 1}}{2}\]
Vậy \[M = \frac{{{m^2} - 1}}{2}\].
Lời giải
A ∪ B: tập hợp các học sinh hoặc học lớp 10 hoặc học môn Tiếng Anh của trường em.
A ∩ B: tập hợp các học sinh lớp 10 học môn Tiếng Anh của trường em.
A \ B: tập hợp các học sinh học lớp 10 nhưng không học môn Tiếng Anh của trường em.
B \ A: tập hợp các học sinh học môn Tiếng Anh của trường em nhưng không học lớp 10 của trường em.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.