Câu hỏi:
13/07/2024 474Cho ∆ABC cân tại A có M là trung điểm BC, đường cao CN cắt AM tại H. Chứng minh BH ^ AC.
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
• Xét ∆ABC cân tại A có AM là đường trung tuyến nên M là trung điểm của BC.
• Xét ∆ABM và ∆ACM có:
AM là cạnh chung
AB = AC (do ∆ABC cân tại A)
BM = CM (do M là trung điểm BC)
Do đó ∆ABM = ∆ACM (c.c.c)
\[ \Rightarrow \widehat {AMB} = \widehat {AMC}\]
Mà \[\widehat {AMB} + \widehat {AMC} = 180^\circ \]
\[\widehat {AMB} = \widehat {AMC} = 90^\circ \]
Do đó AM ^ BC.
∆ABC có AM, CN là hai đường cao.
Mà H là giao điểm của AM và CN.
Do đó H là trực tâm của ∆ABC.
Vậy BH ⊥ AC.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.
Câu 2:
Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A ∪ B; A ∩ B; A \ B; B \ A.
Câu 4:
Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?
Câu 6:
Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].
Câu 7:
Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].
về câu hỏi!