Câu hỏi:

05/07/2023 79

Cho tập hợp A={0; 1; 2; 3; 4; 5}. Có thể lập bao nhiêu số tự nhiên chẵn có 4 chữ số khác nhau?

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 160k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Số tự nhiên thỏa mãn có dạng \[\;\overline {abcd} \]  với a, b, c, d  A  và đôi một khác nhau.

Trường hợp 1: d = 0

Có 5 cách chọn a; 4 cách chọn b và 3 cách chọn c nên theo quy tắc nhân có  5.4.3 = 60 số.

Trường hợp 2: d ≠ 0 ; d có 2 cách chọn là 2, 4

Khi đó có 4 cách chọn a (vì a khác 0 và khác d); có 4 cách chọn b và 3 cách chọn c.

Theo quy tắc nhân có: 2.4.4.3 = 96 số

Có tất cả số số là: 96 + 60 = 156 (số)

Vậy có 156 số.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho sin x + cos x = m. Tính theo m giá trị của M = sin x.cos x.

Xem đáp án » 13/07/2024 16,115

Câu 2:

Cho A là tập hợp các học sinh lớp 10 đang học ở trường em và B là tập hợp các học sinh đang học môn Tiếng Anh của trường em. Hãy diễn đạt bằng lời các tập hợp sau: A B; A ∩ B; A \ B; B \ A.

Xem đáp án » 13/07/2024 5,123

Câu 3:

Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Lý, 11 học sinh giỏi Hoá, 6 học sinh giỏi Toán và Lý, 5 học sinh giỏi Hoá và Lý, 4 học sinh giỏi Toán và Hoá, 3 học sinh giỏi cà 3 môn. Hỏi số học sinh giỏi ít nhất 1 môn trong 3 môn là bao nhiêu em?

Xem đáp án » 13/07/2024 3,138

Câu 4:

Cho A = [−4; 7], B = (−∞; −2) (3; +∞). Tìm A ∩ B.

Xem đáp án » 13/07/2024 2,944

Câu 5:

Chứng minh rằng a5 – a chia hết cho 30.

Xem đáp án » 13/07/2024 2,407

Câu 6:

Rút gọn biểu thức: \[A = 1 + \frac{1}{2} + \frac{1}{{{2^2}}} + ... + \frac{1}{{{2^{2012}}}}\].

Xem đáp án » 13/07/2024 2,188

Câu 7:

Chứng minh \[1 + tanx + ta{n^2}x + ta{n^3}x = \frac{{{\mathop{\rm s}\nolimits} {\rm{inx}} + \cos x}}{{{{\cos }^3}x}}\].

Xem đáp án » 13/07/2024 1,641

Bình luận


Bình luận
Đăng ký thi VIP

VIP 1 - Luyện 1 môn của 1 lớp

  • Được thi tất cả đề của môn bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với những vấn đề chưa nắm rõ của môn bạn đang quan tâm.

Lớp đăng ký:

Môn đăng ký:

Đặt mua

VIP 2 - Combo tất cả các môn của 1 lớp

  • Được thi tất cả đề của tất cả các môn (Toán, Lí, Hóa, Anh, Văn,...) trong lớp bạn đăng ký có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Lớp đăng ký:

Đặt mua

VIP 3 - Combo tất cả các môn tất cả các lớp

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi đáp với đội ngũ chuyên môn với tất cả những vấn đề chưa nắm rõ.
  • Ẩn tất cả các quảng cáo trên Website

Bạn sẽ được luyện tất cả các môn của tất cả các lớp.

Đặt mua

tailieugiaovien.com.vn