Câu hỏi:
13/07/2024 34,709
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.
Cho hình bình hành ABCD, đường chéo BD. Kẻ AH và CK vuông góc với BD ở H và ở K. Chứng minh tứ giác AHCK là hình bình hành.
Câu hỏi trong đề: 5920 câu Trắc nghiệm tổng hợp môn Toán 2023 có đáp án !!
Quảng cáo
Trả lời:

Ta có:
AH ⊥ BD, CK ⊥ BD ⇒ AH // CK (1)
∆ABH và ∆CDK có:
\(\widehat {AHB} = \widehat {CKD}\) (= 90°)
\(\widehat {ABH} = \widehat {CDK}\) (2 góc so le trong)
AB = CD (tính chất hình bình hành)
⇒ ∆ABH = ∆CDK (cạnh huyền – góc nhọn)
⇒ AH = CK (2)
Từ (1), (2) ⇒ tứ giác AHCK là hình bình hành. \[\]
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cách đặt chữ số 0 là 4.
Số cách chọn số vào 4 vị trí còn lại là: \[A_5^4 = 120\].
⇒ Số số lập thành là: 4.120 = 480 (số).
Lời giải

Gọi O là tâm của hình vuông ABCD
Trong mặt phẳng SAC vẽ OH vuông góc với SC (H ∈ SC)
Ta có: BD ⊥ AC, BD ⊥ SA ⇒ BD ⊥ (SAC) ⇒ BD ⊥ OH
Mặt khác OH ⊥ HC.
Vậy OH là đoạn vuông góc chung của SC và BD hay OH là khoảng cách giữa hai đường thẳng chéo nhau SC và BD
\[ \Rightarrow \frac{{SA}}{{SC}} = \frac{{OH}}{{OC}}\]\[ \Rightarrow OH = \frac{{SA.OC}}{{SC}}\]
Ta có:
SA = A, \[OC = \frac{{a\sqrt 2 }}{2}\], \[SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {{a^2} + 2{a^2}} = a\sqrt 3 \]
Vậy \[OH = \frac{{a.\frac{{a\sqrt 2 }}{2}}}{{a\sqrt 3 }} = \frac{{a\sqrt 6 }}{6}\] hay khoảng cách giữa hải đường thẳng SC và BD là \[\frac{{a\sqrt 6 }}{6}\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.