Câu hỏi:

13/07/2024 1,656

Cho hình bình hành ABCD với tâm O.

a) Tìm ảnh của đường thẳng AB qua phép đối xứng tâm O.

b) Tìm ảnh của tam giác ABC qua phép đối xứng tâm O.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Media VietJack

Vì ABCD là hình bình hành nên tâm O là trung điểm các đường chéo AC và BD.

O là trung điểm của AC nên C là ảnh của A qua ĐO.

O là trung điểm của BD nên D là ảnh của B qua ĐO.

Do đó, CD là ảnh của đường thẳng AB qua ĐO.

Lại có A là ảnh của C qua ĐO. Vậy tam giác CDA là ảnh của tam giác ABC qua ĐO.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

Ta có (C): (x – 2)2 + y2 = 1. Suy ra đường tròn (C) có tâm I(2; 0) và bán kính R = 1.

Vì (C') là ảnh của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\) nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\).

Media VietJack

Vì I(2; 0) nên I'(0; 2).

b) Phép quay biến đường tròn thành đường tròn có cùng bán kính nên bán kính của đường tròn (C') là 1.

Vậy phương trình đường tròn (C') là x2 + (y – 2)2 = 1.

Lời giải

Lời giải:

Media VietJack

a) Vì ABCD là hình vuông nên hai đường chéo AC và BD vuông góc với nhau tại tâm O và OA = OB = OC = OD.

Khi đó, phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\) biến các điểm A, B, C, D tương ứng thành các điểm B, C, D, A.

b) Phép quay Q(O, 0) biến hình vuông ABCD thành hình vuông ABCD.

Từ câu a, suy ra phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\) biến hình vuông ABCD thành hình vuông BCDA.

Phép quay Q(O, π) biến các điểm A, B, C, D tương ứng thành các điểm C, D, A, B. Do đó phép quay Q(O, π) biến hình vuông ABCD thành hình vuông CDAB.

Phép quay \({Q_{\left( {O,\,\frac{{3\pi }}{2}} \right)}}\) biến các điểm A, B, C, D tương ứng thành các điểm D, A, B, C. Do đó phép quay \({Q_{\left( {O,\,\frac{{3\pi }}{2}} \right)}}\) biến hình vuông ABCD thành hình vuông DABC.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP