Câu hỏi:
12/07/2024 2,963Trong mặt phẳng tọa độ Oxy, cho đường tròn (C): (x – 2)2 + y2 = 1.
a) Tìm tọa độ tâm đường tròn (C') là ảnh của đường tròn (C) qua \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\).
b) Viết phương trình (C').
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
Ta có (C): (x – 2)2 + y2 = 1. Suy ra đường tròn (C) có tâm I(2; 0) và bán kính R = 1.
Vì (C') là ảnh của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\) nên tâm I' của đường tròn (C') là ảnh của tâm I của đường tròn (C) qua phép quay \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}}\).
Vì I(2; 0) nên I'(0; 2).
b) Phép quay biến đường tròn thành đường tròn có cùng bán kính nên bán kính của đường tròn (C') là 1.
Vậy phương trình đường tròn (C') là x2 + (y – 2)2 = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vuông ABCD có tâm O. Trên đường tròn ngoại tiếp hình vuông, theo chiều dương (ngược chiều kim đồng hồ), thứ tự các đỉnh hình vuông là A, B, C, D.
a) Tìm ảnh của các điểm A, B, C, D qua phép quay tâm O góc quay \(\frac{\pi }{2}\).
b) Mỗi phép quay Q(O, o), \({Q_{\left( {O,\,\frac{\pi }{2}} \right)}},\,{Q_{\left( {O,\,\pi } \right)}},\,{Q_{\left( {O,\,\frac{{3\pi }}{2}} \right)}}\) biến hình vuông ABCD thành hình nào?
Câu 2:
Câu 3:
Cho hình bình hành ABCD với tâm O.
a) Tìm ảnh của đường thẳng AB qua phép đối xứng tâm O.
b) Tìm ảnh của tam giác ABC qua phép đối xứng tâm O.
Câu 4:
Trong Hình 1.22, tam giác ABC đều.
Hãy chỉ ra ảnh của điểm B qua phép quay Q(A, 60°).
Gọi D là ảnh của C qua phép quay Q(A, 60°).
Hỏi B và D có mối quan hệ gì đối với đường thẳng AC?
Câu 5:
về câu hỏi!