Câu hỏi:

13/07/2024 2,010

Với giá trị nào của n thì đồ thị đầy đủ Kn có một chu trình Euler? Có một đường đi Euler?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải:

Đồ thị đầy đủ Kn có n ≥ 2, n ℕ.

Đồ thị đầy đủ Kn là đồ thị liên thông.

Mỗi đỉnh của Kn đều có bậc là n – 1.

+) Theo định lí Euler, K có chu trình Euler khi Kn liên thông (đã thỏa mãn) và mọi đỉnh của Kn đều có bậc chẵn, điều này có nghĩa để K có một chu trình Euler thì n – 1 phải là số chẵn hay n phải là số lẻ, tức là n = 2k + 1 (k *). Vậy với n = 2k + 1 (k *) thì đồ thị đầy đủ Kn có một chu trình Euler.

+) Đồ thị Kn có một đường đi Euler từ A đến B khi và chỉ khi Kn liên thông và mọi đỉnh của Kn đều có bậc chẵn, chỉ trừ A và B có bậc lẻ. Mà mọi đỉnh của Kn đều có bậc là n – 1, nghĩa là mọi đỉnh của Kn đều có bậc chẵn hoặc đều có bậc lẻ.

- Với n = 2, ta có K2 có 2 đỉnh đều có bậc là 1 (là bậc lẻ) nên ta có đường đi Euler từ đỉnh này qua đỉnh còn lại.

- Với n > 2, n * thì mọi đỉnh của Kn đều có bậc cùng chẵn hoặc cùng lẻ lớn hơn 2, do đó không thỏa mãn điều kiện để Kn có đường đi Euler.

Vậy đồ thị đầy đủ Kcó một đường đi Euler khi n = 2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải:

+) Đồ thị Hình 2.24 a) có các đỉnh đều có bậc là 3 nên theo định lí Euler đồ thị này không có chu trình Euler.

Lại có đồ thị a) có 4 đỉnh, tổng số bậc của hai đỉnh không kề nhau luôn không nhỏ hơn 4 nên theo định lí Ore, đồ thị a) có một chu trình Hamilton.

Một chu trình Hamiltol của đồ thị a) là ABCDA.

Media VietJack

+) Đồ thị Hình 2.24 b) liên thông và có các đỉnh đều có bậc chẵn (ở đây là bậc 4) nên theo định lí Euler, đồ thị này có một chu trình Euler. Một chu trình Euler của đồ thị này là ABCDEADBECA.

Media VietJack

Lại có đồ thị b) có 5 đỉnh, tổng số bậc của hai đỉnh không kề nhau luôn không nhỏ hơn 5 nên theo định lí Ore, đồ thị b) có một chu trình Hamilton.

Một chu trình Halminton của đồ thị này là ABCDEA.

Media VietJack

+) Đồ thị Hình 2.24 c) có các đỉnh đều có bậc là 3 nên theo định lí Euler đồ thị này không có chu trình Euler.

Lại có đồ thị c) có 8 đỉnh, mặc dù đồ thị này không thỏa mãn cả 2 định lí Ore và Dirac nhưng đồ thị vẫn có một chu trình Hamilton.

Một chu trình Hamiltol của đồ thị c) là ABCDHGFEA.

Media VietJack

+) Đồ thị Hình 2.24 d) có đỉnh A và B là đỉnh bậc 3, nên theo định lí Euler đồ thị này không có chu trình Euler. Đồ thị d) này cũng không có chu trình Hamilton.

Lời giải

Lời giải:

- Đồ thị Hình 2.19a có đường đi Euler từ A đến B vì đồ thị này liên thông và các đỉnh A, B có bậc 3 (bậc lẻ), còn các đỉnh C, D, E đều có bậc 2 (bậc chẵn). Một đường đi Euler của đồ thị này là ACBDAEB.

- Đồ thị Hình 2.19b không có đường đi Euler vì đồ thị này có bốn đỉnh bậc lẻ (ở đây là bậc bằng 3).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP