Câu hỏi:
11/07/2023 1,301
Trong không gian cho điểm A và ba mặt phẳng đôi một vuông góc (P1), (P2) và (P3) giao nhau tại O. Gọi A1, A2, A3 lần lượt là hình chiếu vuông góc của A trên các mặt phẳng (P1), (P2) và (P3). Gọi M, N, P lần lượt là chân đường vuông góc hạ từ A xuống các giao tuyến của (P1) và (P2), (P2) và (P3), (P3) và (P1).
a) Chứng minh OA2 = OM2 + ON2 + OP2.
b) Áp dụng ý a để chứng minh \(OA = \sqrt {\frac{{OA_1^2 + OA_2^2 + OA_3^2}}{2}} \).
Sử dụng kết quả trên để tính độ dài của một đoạn thẳng mà ba hình chiếu có độ dài lần lượt là 1 cm, 2 cm và 3 cm.
Trong không gian cho điểm A và ba mặt phẳng đôi một vuông góc (P1), (P2) và (P3) giao nhau tại O. Gọi A1, A2, A3 lần lượt là hình chiếu vuông góc của A trên các mặt phẳng (P1), (P2) và (P3). Gọi M, N, P lần lượt là chân đường vuông góc hạ từ A xuống các giao tuyến của (P1) và (P2), (P2) và (P3), (P3) và (P1).
a) Chứng minh OA2 = OM2 + ON2 + OP2.
b) Áp dụng ý a để chứng minh \(OA = \sqrt {\frac{{OA_1^2 + OA_2^2 + OA_3^2}}{2}} \).
Sử dụng kết quả trên để tính độ dài của một đoạn thẳng mà ba hình chiếu có độ dài lần lượt là 1 cm, 2 cm và 3 cm.
Quảng cáo
Trả lời:
Lời giải:
a) Áp dụng định lí Pythagore cho các tam giác vuông.
Tam giác OMA vuông tại M có: OA2 = OM2 + AM2 (1)
Tam giác ONA vuông tại N có: OA2 = ON2 + AN2 (2)
Tam giác OPA vuông tại P có: OA2 = OP2 + AP2 (3)
Cộng vế theo vế của (1), (2), (3) ta được:
3OA2 = (OM2 + ON2 + OP2) + (AM2 + AN2 + AP2)
Ta chứng minh được: AM2 + AN2 + AP2 = 2OA2. (4)
Suy ra: OA2 = OM2 + ON2 + OP2.
b) Vì AM vuông góc OM, OM // AA3 nên AM vuông góc AA3
Mà AA3 vuông góc với OA3
Suy ra: AM // OA3 và AA3 // OM nên AMOA3 là hình bình hành.
Do đó: AM = OA3.
Chứng minh tương tự ta được: AN = OA1, AP = OA2.
Thay kết quả trên vào (4) ta được: \(OA_3^2 + OA_2^2 + OA_1^2 = 2O{A_2}\).
Suy ra \(OA = \sqrt {\frac{{OA_1^2 + OA_2^2 + OA_3^2}}{2}} \).
Ba hình chiếu có độ dài lần lượt là 1 cm, 2 cm và 3 cm.
Thay số vào kết quả trên ta được: \(OA = \sqrt {\frac{{{1^2} + {2^2} + {3^2}}}{2}} = \sqrt 7 \) (cm).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải:
Bước 1: Nhận thấy rằng vật thể có dạng khối chữ H được bao bởi một hình hộp chữ nhật, hai phần rãnh cũng là hình hộp chữ nhật.
Bước 2: Chọn các hướng chiếu lần lượt vuông góc với mặt trước, mặt trên và mặt bên trái của vật thể.
Bước 3: Lần lượt vẽ hình chiếu vuông góc của hình hộp chữ nhật bao bên ngoài vật thể, của khối chữ H và của rãnh hộp chữ nhật.
Bước 4: Xóa các nét thừa, chỉnh sửa các nét vẽ theo quy tắc: các đường thấy vẽ bằng nét liền; các đường khuất vẽ bằng nét đứt. Ghi các kích thước của vật thể trên các hình chiếu.
Bước 5: Vẽ hình chiếu trục đo vuông góc đều của vật thể.
Bước 6: Hoàn thành khung tên, khung bản vẽ để được bản vẽ cuối cùng có dạng như sau:
Ta có: Thể tích của giá chữ H bằng hiệu thể tích của hình hộp chữ nhật bao ngoài và thể tích của hai rãnh hộp chữ nhật.
Thể tích hình hộp chữ nhật bao ngoài là: 60 . 30 . 50 = 90 000 (mm3).
Thể tích rãnh hộp chữ nhật thứ nhất là: 30 . 20 . 30 = 18 000 (mm3).
Thể tích rãnh hộp chữ nhật thứ hai là: 20 . 30 . 10 = 6 000 (mm3).
Vậy thể tích của giá chữ H là: 90 000 – 18 000 – 6 000 = 66 000 (mm3).
Lời giải
Lời giải:
a) Hình chiếu cạnh của đoạn thẳng AB có hai đầu mút là hình chiếu cạnh A3 của A và B3 của B.
Để xác định A3 ta làm như sau: Qua điểm A2 vẽ đường thẳng vuông góc với Oz tại C và trên tia đối của tia Ox lấy điểm D sao cho OC = OD. Đường thẳng qua A1 và vuông góc với Oz cắt đường thẳng qua D và vuông góc với Ox tại A3. Tương tự xác định B3. Nối A3 và B3 ta nhận được hình chiếu cạnh của đoạn thẳng AB.
b) Gọi E là giao điểm của A1A3 và B1B2.
Dễ dàng chứng minh tứ giác A1A2B2E là hình chữ nhật.
Do đó: A1E = A2B2.
Mà A2B2 = 6 cm nên A1E = 6 cm.
Tam giác A1B1E vuông tại E nên A1E2 + B1E2 = A1B12 (định lí Pythagore)
Suy ra \({B_1}E = \sqrt {{A_1}{B_1}^2 - {A_1}{E^2}} = \sqrt {{{10}^2} - {6^2}} = 8\) (cm).
Mà B1E = A3B3 (A3B3B1E là hình chữ nhật)
Vậy A3B3 = 8 cm.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.