Câu hỏi:
11/07/2023 851Trong không gian cho điểm A và ba mặt phẳng đôi một vuông góc (P1), (P2) và (P3) giao nhau tại O. Gọi A1, A2, A3 lần lượt là hình chiếu vuông góc của A trên các mặt phẳng (P1), (P2) và (P3). Gọi M, N, P lần lượt là chân đường vuông góc hạ từ A xuống các giao tuyến của (P1) và (P2), (P2) và (P3), (P3) và (P1).
a) Chứng minh OA2 = OM2 + ON2 + OP2.
b) Áp dụng ý a để chứng minh \(OA = \sqrt {\frac{{OA_1^2 + OA_2^2 + OA_3^2}}{2}} \).
Sử dụng kết quả trên để tính độ dài của một đoạn thẳng mà ba hình chiếu có độ dài lần lượt là 1 cm, 2 cm và 3 cm.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Lời giải:
a) Áp dụng định lí Pythagore cho các tam giác vuông.
Tam giác OMA vuông tại M có: OA2 = OM2 + AM2 (1)
Tam giác ONA vuông tại N có: OA2 = ON2 + AN2 (2)
Tam giác OPA vuông tại P có: OA2 = OP2 + AP2 (3)
Cộng vế theo vế của (1), (2), (3) ta được:
3OA2 = (OM2 + ON2 + OP2) + (AM2 + AN2 + AP2)
Ta chứng minh được: AM2 + AN2 + AP2 = 2OA2. (4)
Suy ra: OA2 = OM2 + ON2 + OP2.
b) Vì AM vuông góc OM, OM // AA3 nên AM vuông góc AA3
Mà AA3 vuông góc với OA3
Suy ra: AM // OA3 và AA3 // OM nên AMOA3 là hình bình hành.
Do đó: AM = OA3.
Chứng minh tương tự ta được: AN = OA1, AP = OA2.
Thay kết quả trên vào (4) ta được: \(OA_3^2 + OA_2^2 + OA_1^2 = 2O{A_2}\).
Suy ra \(OA = \sqrt {\frac{{OA_1^2 + OA_2^2 + OA_3^2}}{2}} \).
Ba hình chiếu có độ dài lần lượt là 1 cm, 2 cm và 3 cm.
Thay số vào kết quả trên ta được: \(OA = \sqrt {\frac{{{1^2} + {2^2} + {3^2}}}{2}} = \sqrt 7 \) (cm).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Hình 3.51 thể hiện hình chiếu đứng và hình chiếu bằng của một đoạn thẳng AB trong không gian.
a) Xác định hình chiếu cạnh A3B3 của đoạn thẳng đó.
b) Biết A1B1 = 10 cm và A2B2 = 6 cm, tính độ dài của A3B3.
Câu 2:
Câu 3:
Cho hình hộp chữ nhật ABCD.A'B'C'D'. Trong các mệnh đề sau, mệnh đề nào đúng?
a) Nếu mặt phẳng chiếu đứng song song với mặt phẳng (ABB'A') thì các hình chiếu đứng của A và D trùng nhau.
b) Nếu mặt phẳng chiếu bằng song song với mặt phẳng (ABCD) thì các hình chiếu bằng của C và C' trùng nhau.
c) Nếu mặt phẳng chiếu cạnh song song với mặt phẳng (BCC'B') thì các hình chiếu cạnh của A và C trùng nhau.
Câu 4:
Câu 5:
Câu 6:
về câu hỏi!