Câu hỏi:

13/07/2024 6,015

Rút gọn rồi tính giá trị biểu thức:

a) \(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\) tại x = 5; y = 7;

b) \(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\) tại \(x = - \frac{1}{2};y = \frac{3}{2}\);

c) \(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\) tại x = –15; y = 5.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Điều kiện xác định của biểu thức A là x2 – y2 ≠ 0 và 2y ≠ 0

\(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\)

\( = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - \frac{{{x^2} - {y^2}}}{{{x^2} - {y^2}}}} \right).\frac{{x - y}}{{2y}}\)

\( = \frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{{x^2} - {y^2}}}.\frac{{x - y}}{{2y}}\)

\( = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}}\)

\( = \frac{y}{{x + y}}\)

Với x = 5; y = 7 ta thấy x2 – y2 = 52 – 72 = –24 ≠ 0 và 2y = 2.7 = 14 ≠ 0.

Do đó, giá trị của biểu thức A tại x = 5; y = 7 là:

\(A = \frac{y}{{x + y}} = \frac{7}{{5 + 7}} = \frac{7}{{12}}\).

b) Ta có: 2x2 – xy = x(2x – y); y2 – 4x2 = (y – 2x)(y + 2x); 2x2 + xy = x(2x + y).

Điều kiện xác định của biểu thức B là x 0; 2x – y 0 và 2x + y 0.

\(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\)

\[ = \frac{{2x + y}}{{x\left( {2x - y} \right)}} + \frac{{8y}}{{\left( {y - 2x} \right)\left( {y + 2x} \right)}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\]

\( = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\)

\[ = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\]

\( = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\)

\( = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} = \frac{{2\left( {4{x^2} - 4xy + {y^2}} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\)

\( = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\).

Ta thấy \(x = - \frac{1}{2};y = \frac{3}{2}\) thỏa mãn điều kiện xác định.

Do đó giá trị của B tại \(x = - \frac{1}{2};y = \frac{3}{2}\) là:

\[B = \frac{{2.\left[ {2.\left( { - \frac{1}{2}} \right) - \frac{3}{2}} \right]}}{{\frac{{ - 1}}{2}.\left[ {2.\left( { - \frac{1}{2}} \right) + \frac{3}{2}} \right]}} = \frac{{2.\frac{{ - 5}}{2}}}{{\frac{{ - 1}}{2}.\frac{1}{2}}} = \frac{{ - 5}}{{\frac{{ - 1}}{4}}} = 20\].

c) Điều kiện xác định của biểu thức C là x 0; y 0; x y.

\(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\)

\( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left[ {\frac{{\left( {x + y} \right)\left( {x - y} \right) + \left( {{x^2} + xy + {y^2}} \right)}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right] - \frac{x}{y}\)

\( = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}} - \frac{x}{y}\)

\( = \frac{{2{x^2} + xy}}{{xy}} - \frac{x}{y}\)\( = \frac{{x\left( {2x + y} \right)}}{{xy}} - \frac{x}{y}\)

\( = \frac{{2x + y}}{y} - \frac{x}{y} = \frac{{2x + y - x}}{y} = \frac{{x + y}}{y}\).

Ta thấy x = –15; y = 5 thỏa mãn điều kiện xác định.

Do đó giá trị của biểu thức C tại x = –15; y = 5 là:

\(C = \frac{{ - 15 + 5}}{5} = \frac{{ - 10}}{5} = - 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Điều kiện xác định của biểu thức D là: 3x 0; x + 1 0; \(\frac{{2 - 4x}}{{x + 1}} \ne 0\)

Xét 3x 0 ta có x 0.

Xét x + 1 0 ta có x –1.

Xét \(\frac{{2 - 4x}}{{x + 1}} \ne 0\) ta có 2 – 4x 0 và x + 1 0, hay \(x \ne \frac{1}{2}\) và x –1.

Vậy điều kiện xác định của biểu thức D là \(x \ne 0;x \ne - 1;x \ne \frac{1}{2}\).

b) Ta có:

\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2.3x - 3.3x\left( {x + 1} \right)}}{{3x.\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{{x^2} + 2x + x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{ - 8{x^2} + 2}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 4{x^2}} \right).\left( {x + 1} \right)}}{{3x\left( {x + 1} \right).\left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}{{3x.2\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{1 + 2x}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{1 + 2x - 3x + {x^2} - 1}}{{3x}}\)

\( = \frac{{{x^2} - x}}{{3x}} = \frac{{x\left( {x - 1} \right)}}{{3x}} = \frac{{x - 1}}{3}\).

Ta thấy x = 5 947 thỏa mãn điều kiện xác định

Do đó, giá trị của biểu thức D tại x = 5 947 là:

\(D = \frac{{5947 - 1}}{3} = \frac{{5946}}{3} = 1982\) .

c*) Để D nhận giá trị nguyên thì \(\frac{{x - 1}}{3}\) phải nhận giá trị nguyên.

Suy ra (x ‒ 1) 3, tức là x ‒ 1 = 3k hay x = 3k + 1 với k (thoả mãn điều kiện xác định).

Lời giải

Lời giải

a) Thời gian tổ sản xuất phải hoàn thành công việc theo kế hoạch là: \(\frac{{600}}{x}\)(giờ)

b) Số khẩu trang tổ sản xuất may được trong mỗi giờ theo thực tế là: x + 20 (chiếc).

Thời gian tổ sản xuất đã hoàn thành công việc theo thực tế là: \(\frac{{600}}{{x + 20}}\)(giờ).

c) Tỉ số của thời gian tổ sản xuất đã hoàn thành công việc theo thực tế và thời gian tổ sản xuất phải hoàn thành công việc theo kế hoạch là:

\(\frac{{600}}{{x + 20}}:\frac{{600}}{x} = \frac{{600}}{{x + 20}}.\frac{x}{{600}} = \frac{x}{{x + 20}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay