Câu hỏi:

13/07/2024 10,155

Cho biểu thức:

\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\).

a) Viết điều kiện xác định của biểu thức D.

b) Tính giá trị của biểu thức D tại x = 5 947.

c*) Tìm giá trị của x để D nhận giá trị nguyên.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Điều kiện xác định của biểu thức D là: 3x 0; x + 1 0; \(\frac{{2 - 4x}}{{x + 1}} \ne 0\)

Xét 3x 0 ta có x 0.

Xét x + 1 0 ta có x –1.

Xét \(\frac{{2 - 4x}}{{x + 1}} \ne 0\) ta có 2 – 4x 0 và x + 1 0, hay \(x \ne \frac{1}{2}\) và x –1.

Vậy điều kiện xác định của biểu thức D là \(x \ne 0;x \ne - 1;x \ne \frac{1}{2}\).

b) Ta có:

\(D = \left( {\frac{{x + 2}}{{3x}} + \frac{2}{{x + 1}} - 3} \right):\frac{{2 - 4x}}{{x + 1}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{\left( {x + 2} \right)\left( {x + 1} \right) + 2.3x - 3.3x\left( {x + 1} \right)}}{{3x.\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{{x^2} + 2x + x + 2 + 6x - 9{x^2} - 9x}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{ - 8{x^2} + 2}}{{3x\left( {x + 1} \right)}}.\frac{{x + 1}}{{2 - 4x}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 4{x^2}} \right).\left( {x + 1} \right)}}{{3x\left( {x + 1} \right).\left( {2 - 4x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{2\left( {1 - 2x} \right)\left( {1 + 2x} \right)}}{{3x.2\left( {1 - 2x} \right)}} - \frac{{3x - {x^2} + 1}}{{3x}}\)

\( = \frac{{1 + 2x}}{{3x}} - \frac{{3x - {x^2} + 1}}{{3x}} = \frac{{1 + 2x - 3x + {x^2} - 1}}{{3x}}\)

\( = \frac{{{x^2} - x}}{{3x}} = \frac{{x\left( {x - 1} \right)}}{{3x}} = \frac{{x - 1}}{3}\).

Ta thấy x = 5 947 thỏa mãn điều kiện xác định

Do đó, giá trị của biểu thức D tại x = 5 947 là:

\(D = \frac{{5947 - 1}}{3} = \frac{{5946}}{3} = 1982\) .

c*) Để D nhận giá trị nguyên thì \(\frac{{x - 1}}{3}\) phải nhận giá trị nguyên.

Suy ra (x ‒ 1) 3, tức là x ‒ 1 = 3k hay x = 3k + 1 với k (thoả mãn điều kiện xác định).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a) Thời gian tổ sản xuất phải hoàn thành công việc theo kế hoạch là: \(\frac{{600}}{x}\)(giờ)

b) Số khẩu trang tổ sản xuất may được trong mỗi giờ theo thực tế là: x + 20 (chiếc).

Thời gian tổ sản xuất đã hoàn thành công việc theo thực tế là: \(\frac{{600}}{{x + 20}}\)(giờ).

c) Tỉ số của thời gian tổ sản xuất đã hoàn thành công việc theo thực tế và thời gian tổ sản xuất phải hoàn thành công việc theo kế hoạch là:

\(\frac{{600}}{{x + 20}}:\frac{{600}}{x} = \frac{{600}}{{x + 20}}.\frac{x}{{600}} = \frac{x}{{x + 20}}\).

Lời giải

Lời giải

a) Điều kiện xác định của biểu thức A là x2 – y2 ≠ 0 và 2y ≠ 0

\(A = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - 1} \right).\frac{{x - y}}{{2y}}\)

\( = \left( {\frac{{{x^2} + {y^2}}}{{{x^2} - {y^2}}} - \frac{{{x^2} - {y^2}}}{{{x^2} - {y^2}}}} \right).\frac{{x - y}}{{2y}}\)

\( = \frac{{{x^2} + {y^2} - {x^2} + {y^2}}}{{{x^2} - {y^2}}}.\frac{{x - y}}{{2y}}\)

\( = \frac{{2{y^2}}}{{\left( {x - y} \right)\left( {x + y} \right)}}.\frac{{x - y}}{{2y}}\)

\( = \frac{y}{{x + y}}\)

Với x = 5; y = 7 ta thấy x2 – y2 = 52 – 72 = –24 ≠ 0 và 2y = 2.7 = 14 ≠ 0.

Do đó, giá trị của biểu thức A tại x = 5; y = 7 là:

\(A = \frac{y}{{x + y}} = \frac{7}{{5 + 7}} = \frac{7}{{12}}\).

b) Ta có: 2x2 – xy = x(2x – y); y2 – 4x2 = (y – 2x)(y + 2x); 2x2 + xy = x(2x + y).

Điều kiện xác định của biểu thức B là x 0; 2x – y 0 và 2x + y 0.

\(B = \frac{{2x + y}}{{2{x^2} - xy}} + \frac{{8y}}{{{y^2} - 4{x^2}}} + \frac{{2x - y}}{{2{x^2} + xy}}\)

\[ = \frac{{2x + y}}{{x\left( {2x - y} \right)}} + \frac{{8y}}{{\left( {y - 2x} \right)\left( {y + 2x} \right)}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\]

\( = \frac{{2x + y}}{{x\left( {2x - y} \right)}} - \frac{{8y}}{{\left( {2x - y} \right)\left( {2x + y} \right)}} + \frac{{2x - y}}{{x\left( {2x + y} \right)}}\)

\[ = \frac{{{{\left( {2x + y} \right)}^2} - 8xy + {{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\]

\( = \frac{{4{x^2} + 4xy + {y^2} - 8xy + 4{x^2} - 4xy + {y^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\)

\( = \frac{{8{x^2} - 8xy + 2{y^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} = \frac{{2\left( {4{x^2} - 4xy + {y^2}} \right)}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}}\)

\( = \frac{{2{{\left( {2x - y} \right)}^2}}}{{x\left( {2x - y} \right)\left( {2x + y} \right)}} = \frac{{2\left( {2x - y} \right)}}{{x\left( {2x + y} \right)}}\).

Ta thấy \(x = - \frac{1}{2};y = \frac{3}{2}\) thỏa mãn điều kiện xác định.

Do đó giá trị của B tại \(x = - \frac{1}{2};y = \frac{3}{2}\) là:

\[B = \frac{{2.\left[ {2.\left( { - \frac{1}{2}} \right) - \frac{3}{2}} \right]}}{{\frac{{ - 1}}{2}.\left[ {2.\left( { - \frac{1}{2}} \right) + \frac{3}{2}} \right]}} = \frac{{2.\frac{{ - 5}}{2}}}{{\frac{{ - 1}}{2}.\frac{1}{2}}} = \frac{{ - 5}}{{\frac{{ - 1}}{4}}} = 20\].

c) Điều kiện xác định của biểu thức C là x 0; y 0; x y.

\(C = \left( {\frac{{{x^2}}}{y} - \frac{{{y^2}}}{x}} \right)\left( {\frac{{x + y}}{{{x^2} + xy + {y^2}}} + \frac{1}{{x - y}}} \right) - \frac{x}{y}\)

\( = \left( {\frac{{{x^3} - {y^3}}}{{xy}}} \right)\left[ {\frac{{\left( {x + y} \right)\left( {x - y} \right) + \left( {{x^2} + xy + {y^2}} \right)}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}}} \right] - \frac{x}{y}\)

\( = \frac{{{x^3} - {y^3}}}{{xy}}.\frac{{{x^2} - {y^2} + {x^2} + xy + {y^2}}}{{{x^3} - {y^3}}} - \frac{x}{y}\)

\( = \frac{{2{x^2} + xy}}{{xy}} - \frac{x}{y}\)\( = \frac{{x\left( {2x + y} \right)}}{{xy}} - \frac{x}{y}\)

\( = \frac{{2x + y}}{y} - \frac{x}{y} = \frac{{2x + y - x}}{y} = \frac{{x + y}}{y}\).

Ta thấy x = –15; y = 5 thỏa mãn điều kiện xác định.

Do đó giá trị của biểu thức C tại x = –15; y = 5 là:

\(C = \frac{{ - 15 + 5}}{5} = \frac{{ - 10}}{5} = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay