Câu hỏi:

11/07/2024 910

Tìm phép đồng dạng biến hình (A) thành hình (C).

Tìm phép đồng dạng biến hình (A) thành hình (C).   (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Tìm phép đồng dạng biến hình (A) thành hình (C).   (ảnh 2)

Gọi f là phép đồng dạng cần tìm.

⦁ Để tìm phép biến hình biến hình (A) thành hình (B), ta tìm phép biến hình biến các điểm M, N, P, Q theo thứ tự thành các điểm M’, N’, P’, Q’.

Ta thấy các đường thẳng MM’, NN’, PP’, QQ’ đồng quy tại I.

Xét phép vị tự tâm I, tỉ số k biến các điểm M, N, P, Q theo thứ tự thành các điểm M’, N’, P’, Q’.

Ta có V(I, k)(M) = M’.

Suy ra OM'=kOM và OM’ = |k|.OM.

Vì M, M’ nằm cùng phía đối với I nên k > 0.

Do đó k=OM'OM.

Tương tự ta cũng có k=ON'ON,k=OP'OP,k=OQ'OQ

Do đó k=OM'OM=ON'ON=OP'OP=OQ'OQ

Vì vậy VI,OM'OM là phép biến hình biến hình (A) thành hình (B).

⦁ Ta thấy OP’ = OP” và P'OP''^=90°.

Suy ra phép quay tâm O, góc quay 90° biến điểm P’ thành điểm P”.

Chứng minh tương tự, ta thấy Q(O, 90°) cũng biến các điểm khác trên hình (B) thành các điểm có vị trí tương ứng trên hình (C).

Vì vậy Q(O, 90°) biến hình (B) thành hình (C).

⦁ Xét hai điểm N, P, ta có:

+) N’ = V(I, k)(N) và N” = Q(O, 90°)(N’);

+) P’ = V(I, k)(P) và P” = Q(O, 90°)(P’).

Do đó:

+) N’P’ = V(I, k)(NP). Suy ra N’P’ = k.NP;

+) N”P” = Q(O, 90°)(N’P’). Suy ra N”P” = N’P’.

Vì vậy N”P” = N’P’ = k.NP.

Vậy f là phép đồng dạng tỉ số k (k > 0) biến (A) thành (C) thỏa mãn (B) = V(I, k)((A)) và (C) = Q(O, 90°)((B));

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

⦁ Ta xét hình hai ngôi nhà:

Tìm các hình đồng dạng với nhau trong Hình 6. (ảnh 2)

Giả sử O là điểm cố định và A là một điểm trên hình ngôi nhà 1 (hình vẽ).

Lấy điểm A’ trên hình ngôi nhà 2 có vị trí tương ứng với điểm A trên hình ngôi nhà 1.

Khi đó ta có ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.

Suy ra OA'=kOA, với k > 0.

Do đó V(O, k)(A) = A’ và OA’ = k.OA.

Vì vậy k=OA'OA.

Chọn một điểm B trên hình ngôi nhà 1 sao cho B ≠ A.

Lấy điểm B’ sao cho OB'=kOB.

Khi đó VO,OA'OAB=B' và điểm B’ là một điểm trên hình ngôi nhà 2 có vị trí tương ứng với điểm B trên hình ngôi nhà 1.

Tương tự như vậy, với mỗi điểm M bất kì trên hình ngôi nhà 1, ta lấy điểm M’ sao cho VO,OA'OAM=M' thì ta được tập hợp các điểm M’ tạo thành hình ngôi nhà 2.

Vì vậy VO,OA'OA biến hình ngôi nhà 1 thành hình ngôi nhà 2.

Vì vậy phép đồng dạng tỉ số OA'OA biến hình ngôi nhà 1 thành hình ngôi nhà 2.

Do đó hình ngôi nhà 1 và hình ngôi nhà 2 đồng dạng với nhau.

Chứng minh tương tự cho hình hai chiếc smartphone, ta cũng được kết quả như trên.

Vậy ta có hình hai ngôi nhà và hình hai chiếc smartphone đồng dạng với nhau trong Hình 6.

Lời giải

Để tìm phép biến hình biến ∆ABC thành ∆A’B’C’, ta tìm phép biến hình biến ∆ABC thành ∆A1B1C1 và tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.

⦁ Để tìm phép biến hình biến ∆ABC thành ∆A1B1C1, ta tìm phép biến hình biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.

Ta thấy các đường thẳng AA1, BB1, CC1 đồng quy tại O.

Xét phép vị tự tâm O, tỉ số k biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.

Ta có V(O, k)(A) = A1.

Suy ra OA1=kOA và OA1 = |k|.OA.

Vì A, A1 nằm cùng phía đối với O nên k > 0.

Do đó k=OA1OA.

Tương tự ta cũng có k=OB1OB,k=OC1OC

Do đó k=OA1OA=OB1OB=OC1OC

Vì vậy VO,OA1OA là phép biến hình biến ∆ABC thành ∆A1B1C1.

⦁ Để tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’, ta tìm phép biến hình biến các điểm A1, B1, C1 theo thứ tự thành các điểm A’, B’, C’.

Ta thấy d là đường trung trực của đoạn A1A’.

Suy ra Đd(A1) = A’.

Chứng minh tương tự, ta được Đd(B1) = B’ và Đd(C1) = C’.

Vì vậy Đd là phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.

Vậy hai phép biến hình biến tam giác ABC thành tam giác A’B’C’ là VO,OA1OA biến ∆ABC thành ∆A1B1C1 và Đd biến ∆A1B1C1 thành ∆A’B’C’.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP