Câu hỏi:

13/07/2024 1,118 Lưu

Cho hai hình vuông tùy ý ABCD và A’B’C’D’ có giao điểm hai đường chéo lần lượt là O và O’ (Hình 4).

a) Gọi A1B1C1D1 là ảnh của hình vuông ABCD qua phép tịnh tiến theo vectơ OO'. Gọi φ là góc lượng giác (O’A1, O’A’). Tìm ảnh A2B2C2D2 của hình vuông A1B1C1D1 qua phép quay Q(O’, φ).

b) Cho biết O'A'=kO'A2. Tìm ảnh của hình vuông A2B2C2D2 qua phép vị tự V(O’, k).

c) Từ kết quả của câu a) và b), hãy cho biết ta có thể kết luận là hai hình vuông tùy ý luôn đồng dạng với nhau được không. Giải thích.

Cho hai hình vuông tùy ý ABCD và A’B’C’D’ có giao điểm hai đường chéo lần lượt là O và O’ (Hình 4).  (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Do phép quay là phép dời hình nên ảnh A2B2C2D2 của hình vuông A1B1C1D1 cũng là hình vuông có kích thước bằng hình vuông A1B1C1D1.

Theo đề, ta có A1B1C1D1 là ảnh của hình vuông ABCD qua phép tịnh tiến theo OO'.

Mà O là tâm của hình vuông ABCD.

Nên ta có O’ là tâm của hình vuông A1B1C1D1.

Mà A2B2C2D2 là ảnh của hình vuông A1B1C1D1 qua Q(O’, φ) (giả thiết).

Suy ra O’ cũng là tâm của hình vuông A2B2C2D2.

Do đó O’A2 = O’B2 = O’C2 = O’D2.

Để tìm ảnh A2B2C2D2 của hình vuông A1B1C1D1 qua Q(O’, φ), ta tìm vị trí các điểm A2, B2, C2, D2 theo thứ tự là ảnh của các điểm A1, B1, C1, D1 qua Q(O’, φ).

Ta có A2 = Q(O’, φ)(A1).

Suy ra O’A2 = O’A1 và (O’A1, O’A2) = φ.

Mà φ = (O’A1, O’A’) (giả thiết).

Do đó A2 nằm trên đường thẳng O’A’.

Vì vậy A2 là một điểm nằm trên đường thẳng O’A’ thỏa mãn O’A2 = O’A1.

Ta có B2 = Q(O’, φ)(B1).

Suy ra O’B2 = O’B1 và (O’B1, O’B2) = φ.

Ta có O’ là tâm của hình vuông A2B2C2D2 và hình vuông A’B’C’D’.

Khi đó A1O'B2^=90°A2O'A1^ và A1O'B'^=90°A'O'A1^.

Suy ra A1O'B2^=A1O'B'^.

Do đó B2 nằm trên đường thẳng O’B’.

Vì vậy B2 là một điểm nằm trên đường thẳng O’B’ thỏa mãn O’B2 = O’B1.

Chứng minh tương tự, ta được:

⦁ C2 nằm trên đường thẳng O’C’ thỏa mãn O’C2 = O’C1;

⦁ D2 nằm trên đường thẳng O’D’ thỏa mãn O’D2 = O’D1.

Vậy ảnh của hình vuông A1B1C1D1 qua Q(O’, φ) là hình vuông A2B2C2D2 thỏa mãn A2, B2, C2, D2 lần lượt nằm trên O’A’, O’B’, O’C’, O’D’ và O’B2 = O’C2 = O’D2 = O’A2 = O’A1.

b) Để tìm ảnh của hình vuông A2B2C2D2 qua V(O’, k), ta tìm ảnh của các điểm A2, B2, C2, D2 qua V(O’, k).

Theo đề, ta có O'A'=kO'A2.

Suy ra V(O’, k)(A2) = A’ và O’A’ = |k|.O’A2.

Ta có O’A2 = O’B2 (chứng minh trên) và O’A’ = O’B’ (O’ là tâm của hình vuông A’B’C’D’).

Suy ra O'B2O'B'=O'A2O'A'=1k.

Do đó O’B’ = |k|.O’B2.

O'B',  O'B2 cùng phương (B2 là một điểm nằm trên đường thẳng O’B’).

Suy ra O'B'=kO'B2.

Do đó V(O’, k)(B2) = B’.

Chứng minh tương tự, ta được V(O’, k)(C2) = C’ và V(O’, k)(D2) = D’.

Vậy ảnh của hình vuông A2B2C2D2 qua V(O’, k) là hình vuông A’B’C’D’.

c) Từ kết quả của câu a) và b), ta thấy phép đồng dạng có được bằng cách thực hiện liên tiếp phép quay tâm O’, góc quay φ = (O’A1, O’A’) và phép vị tự tâm O, tỉ số k biến hình vuông ABCD thành hình vuông A’B’C’D’.

Do đó hai hình vuông ABCD và A’B’C’D’ đồng dạng với nhau.

Vậy hai hình vuông tùy ý luôn đồng dạng với nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

⦁ Ta xét hình hai ngôi nhà:

Tìm các hình đồng dạng với nhau trong Hình 6. (ảnh 2)

Giả sử O là điểm cố định và A là một điểm trên hình ngôi nhà 1 (hình vẽ).

Lấy điểm A’ trên hình ngôi nhà 2 có vị trí tương ứng với điểm A trên hình ngôi nhà 1.

Khi đó ta có ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.

Suy ra OA'=kOA, với k > 0.

Do đó V(O, k)(A) = A’ và OA’ = k.OA.

Vì vậy k=OA'OA.

Chọn một điểm B trên hình ngôi nhà 1 sao cho B ≠ A.

Lấy điểm B’ sao cho OB'=kOB.

Khi đó VO,OA'OAB=B' và điểm B’ là một điểm trên hình ngôi nhà 2 có vị trí tương ứng với điểm B trên hình ngôi nhà 1.

Tương tự như vậy, với mỗi điểm M bất kì trên hình ngôi nhà 1, ta lấy điểm M’ sao cho VO,OA'OAM=M' thì ta được tập hợp các điểm M’ tạo thành hình ngôi nhà 2.

Vì vậy VO,OA'OA biến hình ngôi nhà 1 thành hình ngôi nhà 2.

Vì vậy phép đồng dạng tỉ số OA'OA biến hình ngôi nhà 1 thành hình ngôi nhà 2.

Do đó hình ngôi nhà 1 và hình ngôi nhà 2 đồng dạng với nhau.

Chứng minh tương tự cho hình hai chiếc smartphone, ta cũng được kết quả như trên.

Vậy ta có hình hai ngôi nhà và hình hai chiếc smartphone đồng dạng với nhau trong Hình 6.

Lời giải

Cho ∆ABC đều có cạnh bằng 2. Qua ba phép biến hình liên tiếp: Phép tịnh tiến  , phép quay Q(B, 60°), phép vị tự V(A, 3), ∆ABC biến thành ∆A1B1C1. Tìm diện tích ∆A1B1C1. (ảnh 1)

Ta có ∆ABC đều có cạnh bằng 2. Suy ra AB = AC = 2 và BAC^=60°.

Vì phép tịnh tiến và phép quay đều là phép dời hình nên ảnh của ∆ABC qua phép tịnh tiến TBC và phép quay Q(B, 60°) đều có các kích thước bằng các kích thước tương ứng của ∆ABC.

Gọi f là phép biến hình có được bằng thực hiện hai phép biến hình liên tiếp là phép tịnh tiến TBC và phép quay Q(B, 60°).

Suy ra f là phép dời hình.

Do đó phép đồng dạng tỉ số 3 có được bằng cách thực hiện liên tiếp phép dời hình f và phép vị tự V(A, 3) biến ∆ABC thành ∆A1B1C1.

Vì vậy phép đồng dạng tỉ số 3 biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.

Khi đó A1B1 = 3AB = 3.2 = 6 và A1C1 = 3AC = 3.2 = 6.

Vì ∆ABC và ∆A1B1C1 đồng dạng với nhau nên B1A1C1^=BAC^=60°.

Ta có SΔA1B1C1=12.A1B1.A1C1.sinB1A1C1^=12.6.6.sin60°=93.

Vậy diện tích ∆A1B1C1 bằng 93.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP