Câu hỏi:
12/07/2024 830Cho ∆ABC đều có cạnh bằng 2. Qua ba phép biến hình liên tiếp: Phép tịnh tiến , phép quay Q(B, 60°), phép vị tự V(A, 3), ∆ABC biến thành ∆A1B1C1. Tìm diện tích ∆A1B1C1.
Quảng cáo
Trả lời:
Ta có ∆ABC đều có cạnh bằng 2. Suy ra AB = AC = 2 và .
Vì phép tịnh tiến và phép quay đều là phép dời hình nên ảnh của ∆ABC qua phép tịnh tiến và phép quay Q(B, 60°) đều có các kích thước bằng các kích thước tương ứng của ∆ABC.
Gọi f là phép biến hình có được bằng thực hiện hai phép biến hình liên tiếp là phép tịnh tiến và phép quay Q(B, 60°).
Suy ra f là phép dời hình.
Do đó phép đồng dạng tỉ số 3 có được bằng cách thực hiện liên tiếp phép dời hình f và phép vị tự V(A, 3) biến ∆ABC thành ∆A1B1C1.
Vì vậy phép đồng dạng tỉ số 3 biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.
Khi đó A1B1 = 3AB = 3.2 = 6 và A1C1 = 3AC = 3.2 = 6.
Vì ∆ABC và ∆A1B1C1 đồng dạng với nhau nên .
Ta có .
Vậy diện tích ∆A1B1C1 bằng .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
⦁ Ta xét hình hai ngôi nhà:
Giả sử O là điểm cố định và A là một điểm trên hình ngôi nhà 1 (hình vẽ).
Lấy điểm A’ trên hình ngôi nhà 2 có vị trí tương ứng với điểm A trên hình ngôi nhà 1.
Khi đó ta có ba điểm O, A, A’ thẳng hàng và A, A’ nằm cùng phía đối với O.
Suy ra , với k > 0.
Do đó V(O, k)(A) = A’ và OA’ = k.OA.
Vì vậy .
Chọn một điểm B trên hình ngôi nhà 1 sao cho B ≠ A.
Lấy điểm B’ sao cho .
Khi đó và điểm B’ là một điểm trên hình ngôi nhà 2 có vị trí tương ứng với điểm B trên hình ngôi nhà 1.
Tương tự như vậy, với mỗi điểm M bất kì trên hình ngôi nhà 1, ta lấy điểm M’ sao cho thì ta được tập hợp các điểm M’ tạo thành hình ngôi nhà 2.
Vì vậy biến hình ngôi nhà 1 thành hình ngôi nhà 2.
Vì vậy phép đồng dạng tỉ số biến hình ngôi nhà 1 thành hình ngôi nhà 2.
Do đó hình ngôi nhà 1 và hình ngôi nhà 2 đồng dạng với nhau.
Chứng minh tương tự cho hình hai chiếc smartphone, ta cũng được kết quả như trên.
Vậy ta có hình hai ngôi nhà và hình hai chiếc smartphone đồng dạng với nhau trong Hình 6.
Lời giải
Để tìm phép biến hình biến ∆ABC thành ∆A’B’C’, ta tìm phép biến hình biến ∆ABC thành ∆A1B1C1 và tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.
⦁ Để tìm phép biến hình biến ∆ABC thành ∆A1B1C1, ta tìm phép biến hình biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.
Ta thấy các đường thẳng AA1, BB1, CC1 đồng quy tại O.
Xét phép vị tự tâm O, tỉ số k biến các điểm A, B, C theo thứ tự thành các điểm A1, B1, C1.
Ta có V(O, k)(A) = A1.
Suy ra và OA1 = |k|.OA.
Vì A, A1 nằm cùng phía đối với O nên k > 0.
Do đó .
Tương tự ta cũng có
Do đó
Vì vậy là phép biến hình biến ∆ABC thành ∆A1B1C1.
⦁ Để tìm phép biến hình biến ∆A1B1C1 thành ∆A’B’C’, ta tìm phép biến hình biến các điểm A1, B1, C1 theo thứ tự thành các điểm A’, B’, C’.
Ta thấy d là đường trung trực của đoạn A1A’.
Suy ra Đd(A1) = A’.
Chứng minh tương tự, ta được Đd(B1) = B’ và Đd(C1) = C’.
Vì vậy Đd là phép biến hình biến ∆A1B1C1 thành ∆A’B’C’.
Vậy hai phép biến hình biến tam giác ABC thành tam giác A’B’C’ là biến ∆ABC thành ∆A1B1C1 và Đd biến ∆A1B1C1 thành ∆A’B’C’.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Bài tập Tổ hợp - Xác suất cơ bản, nâng cao có lời giải chi tiết (P6)
Bài tập Lượng giác lớp 11 cơ bản, nâng cao có lời giải (P1)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận