Câu hỏi:

13/07/2024 4,324

Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ.

Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ. (ảnh 1)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

– Hình 7a:

Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ. (ảnh 2)

Gọi tên các đỉnh của đồ thị ở Hình 7a như hình vẽ.

Ta có d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = 2 và d(M) = d(N) = d(P) = d(Q) = d(R) = d(S) = 4.

Suy ra đồ thị ở Hình 7a có tất cả các đỉnh đều có bậc chẵn.

Do đó đồ thị ở Hình 7a có chu trình Euler.

Nói cách khác, ta có thể vẽ Hình 7a bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.

Chẳng hạn, ta có cách vẽ như sau: NAMSERQCPNBPQDRSFMN.

– Hình 7b:

Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ. (ảnh 3)

Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.

Ta có:

d(M) = d(U) = 1;

d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = d(G) = d(H) = d(I) = d(J) = d(K) = d(L) = 2;

d(N) = d(P) = d(Q) = d(R) = d(S) = d(T) = 4.

Suy ra đồ thị ở Hình 7b có đúng 2 đỉnh bậc lẻ là M và U.

Do đó đường đi Euler đi từ đỉnh M đến đỉnh U.

Nói cách khác, ta có thể vẽ Hình 7b bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.

Chẳng hạn, ta có cách vẽ như sau: MNBCTDANPFGSHEPQJKRLIQRSTU.

– Hình 7c:

Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ. (ảnh 4)

Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.

Ta có:

d(E) = 1;

d(A) = d(B) = d(G) = 4;

d(F) = d(C) = d(D) = 3.

Suy ra đồ thị ở Hình 7c có 4 đỉnh bậc lẻ.

Do đó đồ thị ở Hình 7c không có đường đi Euler và cũng không có chu trình Euler.

Nói cách khác, ta không thể vẽ Hình 7c bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Tìm đường đi ngắn nhất từ đỉnh M đến N trong đồ thị có trọng số sau: (ảnh 2)

– Gán nhãn cho M bằng 0 (tức là, nM = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh M.

– Tại các đỉnh kề với M, gồm A, B, C, ta có:

nA = nM + wMA = 0 + 3 = 3. Vì 3 < ∞ nên ta đổi nhãn của A thành 3.

nB = nM + wMB = 0 + 4 = 4. Vì 4 < ∞ nên ta đổi nhãn của B thành 4.

nC = nM + wMC = 0 + 5 = 5. Vì 5 < ∞ nên ta đổi nhãn của C thành 5.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là A nên ta khoanh tròn đỉnh A (đỉnh gần M nhất, chỉ tính các điểm khác M).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với A gồm D, E, ta có:

nD = nA + wAD = 3 + 8 = 11. Vì 11 < ∞ nên ta đổi nhãn của D thành 11.

nE = nA + wAE = 3 + 10 = 13.Vì 13 < ∞ nên ta đổi nhãn của E thành 13.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần M thứ hai).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với B gồm D, F, ta có:

nD = nB + wBD = 4 + 8 = 12. Vì 12 > 11 (11 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 11.

nF = nB + wBF = 4 + 6 = 10. Vì 10 < ∞ nên ta đổi nhãn của F thành 10.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C nên ta khoanh tròn đỉnh C (đỉnh gần M thứ ba).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với C gồm E, F, ta có:

nE = nC + wCE = 5 + 6 = 11. Vì 11 < 13 (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 11.

nF = nC + wCF = 5 + 8 = 13. Vì 13 > 10 (10 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 10.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần M thứ tư).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với F chỉ có N, ta có:

nN = nF + wFN = 10 + 12 = 22. Vì 22 < ∞ nên ta đổi nhãn của N thành 22.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D, E nên ta tùy ý khoanh tròn đỉnh E (đỉnh gần M thứ năm).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với E chỉ có N, ta có:

nN = nE + wEN = 11 + 7 = 18. Vì 18 < 22 (22 là nhãn hiện tại của N) nên ta đổi nhãn của N thành 18.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta tùy ý khoanh tròn đỉnh D (đỉnh gần M thứ sáu).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với D chỉ còn N, ta có:

nN = nD + wDN = 11 + 9 = 20. Vì 20 > 18 (18 là nhãn hiện tại của N) nên ta giữ nguyên nhãn của N là 18.

Lúc này, ta thấy chỉ còn đỉnh N chưa được khoanh tròn nên ta khoanh tròn đỉnh N (đỉnh gần M thứ bảy).

– Nhìn lại các bước trên, ta thấy:

nN = 18 = nE + wEN = nC + wCE + wEN = nM + wMC + wCE + wEN

= wMC + wCE + wEN = lMCEN.

Vậy MCEN là đường đi ngắn nhất từ đỉnh M đến N, với độ dài bằng 18.

Lời giải

Đáp án đúng là: C

Ta có d(A) = d(B) = d(C) = 2 và d(E) = d(F) = 3.

Suy ra đồ thị ở Hình 2 có đúng hai đỉnh bậc lẻ là đỉnh E và đỉnh F.

Do đó đồ thị ở Hình 2 có đường đi Euler xuất phát từ đỉnh E đến đỉnh F (hoặc từ đỉnh F đến đỉnh E) nhưng không có chu trình Euler.

Vậy ta chọn phương án C.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP