Câu hỏi:
13/07/2024 2,553Có thể vẽ mỗi hình sau đây bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần không? Nếu có, hãy chỉ ra một cách vẽ.
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).
Quảng cáo
Trả lời:
– Hình 7a:
Gọi tên các đỉnh của đồ thị ở Hình 7a như hình vẽ.
Ta có d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = 2 và d(M) = d(N) = d(P) = d(Q) = d(R) = d(S) = 4.
Suy ra đồ thị ở Hình 7a có tất cả các đỉnh đều có bậc chẵn.
Do đó đồ thị ở Hình 7a có chu trình Euler.
Nói cách khác, ta có thể vẽ Hình 7a bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: NAMSERQCPNBPQDRSFMN.
– Hình 7b:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(M) = d(U) = 1;
⦁ d(A) = d(B) = d(C) = d(D) = d(E) = d(F) = d(G) = d(H) = d(I) = d(J) = d(K) = d(L) = 2;
⦁ d(N) = d(P) = d(Q) = d(R) = d(S) = d(T) = 4.
Suy ra đồ thị ở Hình 7b có đúng 2 đỉnh bậc lẻ là M và U.
Do đó đường đi Euler đi từ đỉnh M đến đỉnh U.
Nói cách khác, ta có thể vẽ Hình 7b bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
Chẳng hạn, ta có cách vẽ như sau: MNBCTDANPFGSHEPQJKRLIQRSTU.
– Hình 7c:
Gọi tên các đỉnh của đồ thị ở Hình 7b như hình vẽ.
Ta có:
⦁ d(E) = 1;
⦁ d(A) = d(B) = d(G) = 4;
⦁ d(F) = d(C) = d(D) = 3.
Suy ra đồ thị ở Hình 7c có 4 đỉnh bậc lẻ.
Do đó đồ thị ở Hình 7c không có đường đi Euler và cũng không có chu trình Euler.
Nói cách khác, ta không thể vẽ Hình 7c bằng một nét liền, không nhấc bút khỏi giấy, không vẽ lại đoạn đường nào hai lần.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Mỗi đồ thị trong Hình 6 có chu trình Hamilton không? Nếu có hãy chỉ ra một chu trình như vậy. Nếu không, đồ thị có đường đi Hamilton không? Nếu có, hãy chỉ ra một đường đi như vậy.
Câu 2:
Cho đồ thị ở Hình 3, phát biểu nào sau đây đúng?
A. Đồ thị có chu trình Euler.
B. Đồ thị đường đi Euler xuất phát từ đỉnh A.
C. Đồ thị đường đi Euler xuất phát từ đỉnh E.
D. Đồ thị không có đường đi Euler.
Câu 3:
Tìm đường đi ngắn nhất từ đỉnh M đến N trong đồ thị có trọng số sau:
Câu 4:
Tổng tất cả bậc của các đỉnh của đồ thị ở Hình 1 là
A. 20.
B. 18.
C. 12.
D. 9.
Câu 5:
Số đỉnh, số cạnh của đồ thị ở Hình 1 lần lượt là
A. 3 đỉnh, 8 cạnh.
B. 4 đỉnh, 8 cạnh.
C. 3 đỉnh, 9 cạnh.
D. 4 đỉnh, 9 cạnh.
Câu 6:
Đồ thị ở Hình 2 có bao nhiêu đỉnh bậc lẻ?
A. 6.
B. 7.
C. 8.
D. 9.
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
15 câu Trắc nghiệm Đại cương về đường thẳng và mặt phẳng có đáp án (Nhận biết)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
100 câu trắc nghiệm Tổ hợp - Xác suất cơ bản (P1)
về câu hỏi!