Câu hỏi:

11/07/2024 2,711 Lưu

Khẳng định nào dưới đây là đúng?

a) Hai tam giác luôn đồng dạng với nhau;

b) Hai hình chữ nhật luôn đồng dạng với nhau;

c) Hai hình thoi luôn đồng dạng với nhau;

d) Hai hình vuông luôn đồng dạng với nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

+ Khẳng định a) và b) sai.

- Ta có thể lấy hai tam giác với các kích thước là (3; 4; 5) và (6; 7; 8), ta thấy tỉ lệ các cặp cạnh tương ứng không bằng nhau. Do đó hai tam giác bất kì không đồng dạng với nhau.

- Tương tự, hai hình chữ nhật bất kì cũng không đồng dạng với nhau.

+ Khẳng định c) và d) đúng.

Vì hình thoi và hình vuông đều là các hình có 4 cạnh bằng nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.

Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.

Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).  (ảnh 1)

- Trên đường tròn (O1; R) lấy điểm B bất kì.

- Trên đường tròn (O2; 2R) dựng đường kính CD // O1­­B.

- BC cắt O1O2 tại E.

+) Ta có: O1B // CO2 nên theo định lí Thales có EO2EO1=O2CO1B=2RR=2.

Suy ra EO2=2EO1 nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.

Ta có: AO2AO1=2RR=2 và A nằm giữa hai điểm O1 và O2 nên AO2=2AO1. Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Lời giải

Gọi G là trung điểm của BM.

Cho hình vuông ABCD có hai đường chéo cắt nhau tại O. Gọi M, N, E lần lượt là trung điểm của AB, BC, BO (Hình 58). Chứng minh rằng hai hình AMOD và OENC đồng dạng với nhau.    (ảnh 2)

Khi đó, ta thấy Hình 58 và Hình 56 là hai hình giống nhau. 

+) Theo kết quả Ví dụ 8 trang 32 thì hai hình BGEN và AMOD đồng dạng với nhau (1).

+) Theo kết quả Luyện tập 4 trang 32 thì hai hình OMGE và COEN đồng dạng với nhau hay hai hình MGEO và OENC đồng dạng với nhau (2).

+) Thực hiện phép đối xứng trục GE thì hình BGEN biến thành hình MGEO (3).

Do đó, hai hình BGEN và MGEO đồng dạng với nhau.

Từ (1), (2) và (3) suy ra hai hình AMOD và OENC đồng dạng với nhau.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP