Câu hỏi:

12/07/2024 1,504 Lưu

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.

Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.  Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.    (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.  Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.    (ảnh 2)

Một thấu kính phân kì có tiêu cự OF = OF' = 20 cm (kính cận). Vật sáng AB được đặt vuông góc với trục chính của thấu kính, cách thấu kính một đoạn OA = 60 cm, qua thấu kính cho ảnh ảo A'B' (Hình 57). A'B' là ảnh của AB qua một phép vị tự tâm O tỉ số k.  Tính khoảng cách A'O từ ảnh đến thấu kính và so sánh khoảng cách đó với khoảng cách AO từ vật đến thấu kính.    (ảnh 3)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

+ Khẳng định a) và b) sai.

- Ta có thể lấy hai tam giác với các kích thước là (3; 4; 5) và (6; 7; 8), ta thấy tỉ lệ các cặp cạnh tương ứng không bằng nhau. Do đó hai tam giác bất kì không đồng dạng với nhau.

- Tương tự, hai hình chữ nhật bất kì cũng không đồng dạng với nhau.

+ Khẳng định c) và d) đúng.

Vì hình thoi và hình vuông đều là các hình có 4 cạnh bằng nhau.

Lời giải

Chú ý: Phép vị tự biến đường tròn có bán kính R thành đường tròn có bán kính R' = |k|R và có tâm là ảnh của tâm.

Hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A và đường tròn tâm O2 có bán kính gấp 2 lần đường tròn tâm O1.

Cho hai đường tròn (O1; R) và (O2; 2R) tiếp xúc ngoài với nhau tại điểm A. Tìm phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).  (ảnh 1)

- Trên đường tròn (O1; R) lấy điểm B bất kì.

- Trên đường tròn (O2; 2R) dựng đường kính CD // O1­­B.

- BC cắt O1O2 tại E.

+) Ta có: O1B // CO2 nên theo định lí Thales có EO2EO1=O2CO1B=2RR=2.

Suy ra EO2=2EO1 nên ta có phép vị tự tâm E, tỉ số 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm E, tỉ số 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

+) Nối B với D, ta chứng minh được BD cắt O1O2 tại điểm tiếp xúc A của hai đường tròn.

Ta có: AO2AO1=2RR=2 và A nằm giữa hai điểm O1 và O2 nên AO2=2AO1. Do đó, ta có phép vị tự tâm A, tỉ số – 2 biến điểm O1 thành điểm O2.

Như vậy, phép vị tự tâm A, tỉ số – 2 biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Vậy có 2 phép vị tự biến đường tròn (O1; R) thành đường tròn (O2; 2R).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP