Câu hỏi:

13/07/2024 1,399

Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:

a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.

b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P, Q, R, S lần lượt là trung điểm của các cạnh AB, BC, CC', C'D', D'A', AA'. Chứng minh rằng:  a) Sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.  b) Các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.  (ảnh 1)

a) Ta có S và P lần lượt là trung điểm của AA' và CC'.

Suy ra AS=12AA';  CP=12AA'.

Mà AA' = CC' và AA' // CC' (do ABCD.A'B'C'D' là hình hộp)

Nên AS = CP và AS // CP. Do đó, tứ giác ASPC là hình bình hành.

Suy ra AC // SP.

Mặt khác MN // AC (do MN là đường trung bình của tam giác ABC).

Khi đó, MN // SP.

Vậy M, N, P, S cùng thuộc một mặt phẳng.

Ta cũng chứng minh được PQ // CD', CD' // BA', BA' // MS nên PQ // MS.

Do đó Q (MNPS).

Tương tự ta có QR // MN nên R (MNPS).

Vậy sáu điểm M, N, P, Q, R, S cùng thuộc một mặt phẳng.

b) Gọi O là giao điểm của các đường chéo hình hộp ABCD.A'B'C'D'.

Khi đó, O là trung điểm của các đường chéo BD', B'D, AC', A'C.

Ta có tứ giác BND'R là hình bình hành, nên hai đường chéo BD', NR cắt nhau tại trung điểm O của mỗi đường.

Tương tự, ta chứng minh được QM, PS đều nhận O là trung điểm.

Vậy các đoạn thẳng MQ, NR, PS cắt nhau tại trung điểm của mỗi đoạn.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi G, I, K lần lượt là trọng tâm các tam giác ABC, A'B'C', A'B'B.

a) Chứng minh rằng IK // (BCC'B').

b) Chứng minh rằng (AGK) // (A'IC).

c) Gọi (α) là mặt phẳng đi qua điểm K và song song với mặt phẳng (ABC). Mặt phẳng (α) cắt A'C tại điểm L. Tính LA'LC.

Xem đáp án » 13/07/2024 6,295

Câu 2:

Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây là sai?

A. Các mặt của hình hộp là các hình bình hành.

B. Hai mặt phẳng lần lượt chứa hai mặt đối diện của hình hộp song song với nhau.

C. Các đoạn thẳng AC', A'C, BD', B'D bằng nhau.

D. Các đường thẳng AC', A'C, BD', B'D đồng quy.

Xem đáp án » 13/07/2024 5,014

Câu 3:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M là trung điểm của A'C'.

a) Chứng minh rằng A'B // (B'CM).

b) Xác định giao tuyến d của hai mặt phẳng (ABC) và (A'BC').

Xem đáp án » 24/07/2023 1,801

Câu 4:

Số đường chéo trong một hình hộp là:

A. 4.

B. 24.

C. 28.

D. 2.

Xem đáp án » 12/07/2024 1,728

Câu 5:

Cho hình hộp ABCD.A'B'C'D'. Mặt phẳng (BA'C') song song với mặt phẳng nào dưới đây?

A. (ACD).

B. (ADD').

C. (DCD').

D. (AD'C).

Xem đáp án » 11/07/2024 1,626

Câu 6:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Khẳng định nào sau đây là đúng?

A. (A'MN) // (ACC').

B. (A'BN) // (AC'M).

C. C'M // (A'B'B).

D. BN // (ACC'A').

Xem đáp án » 13/07/2024 1,541

Câu 7:

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của A'B', B'C'. Gọi d là giao tuyến của hai mặt phẳng (BMN) và (ACC'A'). Khẳng định nào sau đây là đúng?

A. d // AA'.

B. d // BC.

C. d // A'B'.

D. d // A'C'.

Xem đáp án » 13/07/2024 1,492

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn