Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Chứng minh rằng AM // (A'NC).
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Chứng minh rằng AM // (A'NC).
Quảng cáo
Trả lời:

Vì M, N lần lượt là trung điểm của BC, B'C' nên MN là đường trung bình của hình thang BCC'B' (vì hình bình hành cũng là hình thang).
Suy ra MN // BB' và MN = BB'.
Mà AA' // BB' và AA' = BB' (do ABC.A'B'C' là hình lăng trụ).
Do đó, AA' // MN và AA' = MN nên AA'NM là hình bình hành.
Suy ra AM // A'N, mà A'N ⊂ (A'NC).
Vậy AM // (A'NC).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Vì M, N lần lượt là trung điểm của các cạnh SB, BC nên MN là đường trung bình của tam giác SBC, do đó MN // SC. Mà MN ⊂ (MNP).
Từ đó suy ra SC // (MNP).
b) Gọi Q là trung điểm của SD, mà P là trung điểm của CD nên PQ là đường trung bình của tam giác SCD nên SC // QP.
Hai mặt phẳng (MNP) và (SCD) có điểm P chung và MN // SC nên giao tuyến của hai mặt phẳng (MNP) và (SCD) là đường thẳng QP. Đồng thời, Q là giao điểm của đường thẳng SD với mặt phẳng (MNP).
c) Trong mặt phẳng (ABCD), gọi I là giao điểm của AC và NP.
Trong mặt phẳng (SAC), lấy E thuộc SA sao cho IE // SC.
Khi đó, ta có I ∈ (MNP) và IE // MN nên E ∈ (MNP).
Vậy E là giao điểm của SA với mặt phẳng (MNP).
d) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC và BD.
Ta có NP là đường trung bình của tam giác BCD nên NP // BD hay NI // BO.
Trong tam giác BOC có NI // BO và N là trung điểm của BC nên NI là đường trung bình của tam giác BOC, suy ra I là trung điểm của OC. Khi đó . Suy ra .
Xét tam giác SAC, ta có IE // SC nên .
Lời giải
Đáp án đúng là: B

Vì ABCD là hình bình hành nên AB // CD.
Ta có M ∈ SA nên M ⊂ (SAB).
Hai mặt phẳng (SAB) và (MCD) có M là điểm chung và lần lượt chứa hai đường thẳng AB và CD song song với nhau nên giao tuyến của chúng là đường thẳng đi qua M và song song với AB.
Từ M, kẻ đường thẳng song song với AB, cắt SB tại N. Khi đó (SAB) ∩ (MCD) = MN.
Do vậy N là giao điểm của SB và mặt phẳng (MCD).
Ta có MA = 2MS .
Xét tam giác SAB có MN // AB, theo định lí Thalés ta có: .
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.