Câu hỏi:
13/07/2024 45,368Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N, P lần lượt là trung điểm của các cạnh SB, BC, CD.
a) Chứng minh rằng SC // (MNP).
b) Xác định giao tuyến của mặt phẳng (MNP) với mặt phẳng (SCD) và giao điểm Q của đường thẳng SD với mặt phẳng (MNP).
c) Xác định giao điểm E của đường thẳng SA với mặt phẳng (MNP).
d) Tính tỉ số .
Quảng cáo
Trả lời:
a) Vì M, N lần lượt là trung điểm của các cạnh SB, BC nên MN là đường trung bình của tam giác SBC, do đó MN // SC. Mà MN ⊂ (MNP).
Từ đó suy ra SC // (MNP).
b) Gọi Q là trung điểm của SD, mà P là trung điểm của CD nên PQ là đường trung bình của tam giác SCD nên SC // QP.
Hai mặt phẳng (MNP) và (SCD) có điểm P chung và MN // SC nên giao tuyến của hai mặt phẳng (MNP) và (SCD) là đường thẳng QP. Đồng thời, Q là giao điểm của đường thẳng SD với mặt phẳng (MNP).
c) Trong mặt phẳng (ABCD), gọi I là giao điểm của AC và NP.
Trong mặt phẳng (SAC), lấy E thuộc SA sao cho IE // SC.
Khi đó, ta có I ∈ (MNP) và IE // MN nên E ∈ (MNP).
Vậy E là giao điểm của SA với mặt phẳng (MNP).
d) Gọi O là giao điểm của AC và BD, suy ra O là trung điểm của AC và BD.
Ta có NP là đường trung bình của tam giác BCD nên NP // BD hay NI // BO.
Trong tam giác BOC có NI // BO và N là trung điểm của BC nên NI là đường trung bình của tam giác BOC, suy ra I là trung điểm của OC. Khi đó . Suy ra .
Xét tam giác SAC, ta có IE // SC nên .
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình bình hành. Trên cạnh SA lấy điểm M sao cho MA = 2MS. Mặt phẳng (CDM) cắt SB tại N. Tỉ số bằng:
A. .
B. .
C. .
D. .
Câu 2:
Cho hình chóp S.ABCD. Gọi M là trung điểm của cạnh SD.
a) Xác định giao tuyến của hai mặt phẳng (SAC) và (SBD).
b) Xác định giao điểm của đường thẳng BM với mặt phẳng (SAC).
c) Xác định giao tuyến của mặt phẳng (MBC) với các mặt phẳng (SAB) và (SAD).
Câu 3:
Cho mặt phẳng (P), ba điểm A, B, C không thẳng hàng và không nằm trên (P). Chứng minh rằng nếu ba đường thẳng AB, BC, CA cắt mặt phẳng (P) lần lượt tại các điểm M, N, P thì M, N, P thẳng hàng.
Câu 4:
Cho hình hộp ABCD.A'B'C'D'. Gọi M, N, P lần lượt là trung điểm của AD, B'C', DD'.
a) Chứng minh rằng ADC'B' là hình bình hành.
b) Chứng minh rằng BD // (AB'D'), MN // (AB'D').
c) Chứng minh rằng (MNP) // (AB'D') và BD // (MNP).
d*) Xác định giao tuyến của mặt phẳng (MNP) với các mặt của hình hộp.
e*) Lấy một đường thẳng cắt ba mặt phẳng (AB'D'), (MNP), (C'BD) lần lượt tại I, J, H. Tính tỉ số .
Câu 5:
Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M, N lần lượt là trung điểm của BC, B'C'. Chứng minh rằng AM // (A'NC).
Câu 6:
Cho bốn điểm A, B, C, D không cùng thuộc một mặt phẳng. Khẳng định nào sau đây là sai?
A. Bốn điểm A, B, C, D đã cho đôi một khác nhau.
B. Không có ba điểm nào trong bốn điểm A, B, C, D là thẳng hàng.
C. Hai đường thẳng AC và BD song song với nhau.
D. Hai đường thẳng AC và BD không có điểm chung.
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
10 Bài tập Biến cố hợp. Biến cố giao (có lời giải)
15 câu Trắc nghiệm Khoảng cách có đáp án (Nhận biết)
10 Bài tập Nhận biết góc phẳng của góc nhị diện và tính góc phẳng nhị diện (có lời giải)
23 câu Trắc nghiệm Xác suất của biến cố có đáp án (Phần 2)
Bài tập Xác suất ôn thi THPT Quốc gia có lời giải (P1)
38 câu trắc nghiệm Toán 11 Kết nối tri thức Lôgarit có đáp án
Hãy Đăng nhập hoặc Tạo tài khoản để gửi bình luận