Câu hỏi:
13/07/2024 14,834
Cho hình chóp S.ABC có đáy là tam giác vuông tại C, \[AC = a;\;BC = \sqrt 2 a\], SA vuông góc với mặt phẳng đáy và SA = a. Góc giữa đường thẳng SB và mặt phẳng đáy bằng
Quảng cáo
Trả lời:
Lời giải
\(SA \bot \left( {ABC} \right) \Rightarrow \left( {\widehat {SB;\;\left( {ABC} \right)}} \right) = \left( {\widehat {SB;\;AB}} \right) = \widehat {SBA}\)
Xét tam giác vuông ABC có \[AB = \sqrt {A{C^2} + B{C^2}} = a\sqrt 3 \]
SA ^ (ABC) Þ SA ^ AB Þ DSAB vuông tại A
\( \Rightarrow \tan \widehat {SBA} = \frac{{SA}}{{AB}} = \frac{a}{{a\sqrt 3 }} = \frac{1}{{\sqrt 3 }}\)
\( \Rightarrow \widehat {SBA} = 30^\circ \)
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: B
Với góc a Î (90°; 180°) thì sin a > 0; cos a < 0; tan a < 0 và cot a < 0
Khi đó:
• sin a và cot a trái dấu
Vậy khẳng định A là sai
• Tích sin a.cot a mang dấu âm
Vậy khẳng định B là đúng
• Tích sin a.cos a mang dấu âm
Vậy khẳng định C là sai
• sin a và tan a trái dấu
Vậy khẳng định D là sai
Chọn đáp án B.
Lời giải
Lời giải
Ta có tam giác ABC vuông cân tại C nên BC ^ AC (1) và AC = BC = 3a
Mặt khác SA ^ (ABC) Þ SA ^ BC (2)
Từ (1) và (2) suy ra BC ^ (SAC) Þ d(B, (SAC)) = BC = 3a
Vậy khoảng cách từ B đến mặt phẳng (SAC) bằng 3a.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.