Câu hỏi:

12/07/2024 673

Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF.

a) Chứng minh đường thẳng OO’ song song với các mặt phẳng (CDEF), (ADF) và (BCE).

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).

Đề toán-lý-hóa Đề văn-sử-địa Tiếng anh & các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình bình hành ABCD và ABEF không nằm trong cùn một mặt phẳng. Gọi O và O’ lần lượt là tâm của ABCD và ABEF. a) Chứng minh đường thẳng OO’ song song với các mặt phẳng (CDEF), (ADF) và (BCE). (ảnh 1)

a) Vì O là tâm hình bình hành ABCD nên O là trung điểm AC và BD, O’ là tâm của hình bình hành ABEF nên O’ là trung điểm AE và BF.

+) Ta có: OO’ // FD (tính chất đường trung bình trong tam giác BDF), mà FD (CDEF). Do đó OO’ // (CDEF).

+) Ta lại có: FD (ADF) nên OO’ // (ADF).

+) Ta có: OO’ // EC (tính chất đường trung bình trong tam giác ACE), mà EC (BCE). Do đó OO’ // (BCE).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và một điểm M di động trên cạnh AD. Một mặt phẳng (α) qua M, song song với CD và SA, cắt BC, SC, SD lần lượt N, P, Q.

a) MNPQ là hình gì?

Xem đáp án » 12/07/2024 21,667

Câu 2:

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC.

a) Chứng minh đường thẳng OM song song với hai mặt phẳng (SAD) và (SBD).

b) Tìm giao tuyến của hai mặt phẳng (OMD) và (SAD).

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm hai đường chéo. Gọi M là trung điểm của SC. a) Chứng minh đường thẳng OM song song với hai mặt phẳng (SAD) và (SBD).  (ảnh 1)

Xem đáp án » 12/07/2024 19,482

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình thang, đáy lớn AB. Gọi M là trung điểm của CD, (P) là mặt phẳng qua M song song với SA và BC. Tìm giao tuyến của (P) với các mặt của hình chóp S.ABCD.

Xem đáp án » 12/07/2024 17,870

Câu 4:

Cho tứ diện ABCD và điểm M thuộc cạnh AB. Gọi (α) là mặt phẳng qua M, song song với hai đường thẳng BC và AD. Gọi N, P, Q lần lượt là giao điểm của mặt phẳng (α) với các cạnh AC, CD và DB.

a) Chứng minh MNPQ là hình bình hành.

Xem đáp án » 12/07/2024 16,434

Câu 5:

Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).

Cho E và F lần lượt là trung điểm các cạnh AB và AC của tứ diện ABCD. Xác định vị trí tương đối của các đường thẳng BC, AD và EF với mặt phẳng (BCD).  (ảnh 1)

Xem đáp án » 12/07/2024 6,133

Câu 6:

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng:

a) MN song song với hai mặt phẳng (SBC) và (SAD);

Cho hình chóp S.ABC có ABCD là hình bình hành và M, N, E lần lượt là trung điểm của các đoạn thẳng AB, CD, SA (Hình 17). Chứng minh rằng: a) MN song song với hai mặt phẳng (SBC) và (SAD); (ảnh 1)

Xem đáp án » 12/07/2024 4,355

Câu 7:

c) Tìm giao tuyến của hai mặt phẳng (OMN) và (ABCD).

Xem đáp án » 12/07/2024 3,584