Câu hỏi:

31/07/2023 574

Cho ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q), (R) ∩ (P) = a và (R) ∩ (Q) = b. Xét vị trí tương đối của a và b.

Cho ba mặt phẳng (P), (Q), (R) thỏa mãn (P) // (Q), (R) ∩ (P) = a và (R) ∩ (Q) = b. Xét vị trí tương đối của a và b.  (ảnh 1)

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Ta có: (P) // (Q) và a (P) nên a // (Q).

Ta lại có (R) ∩ (Q) = b nên a // b.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình hộp ABCD.A’B’C’D’. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.

Xem đáp án » 12/07/2024 5,696

Câu 2:

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của SA, SD.

a) Chứng minh rằng (OMN) // (SBC).

Xem đáp án » 12/07/2024 3,914

Câu 3:

Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:

AA’ + CC’ = BB’ + DD’.

Xem đáp án » 12/07/2024 3,102

Câu 4:

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).

a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).  a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.  (ảnh 1)

Xem đáp án » 12/07/2024 2,755

Câu 5:

Cho hình chóp S.ABCD với đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo, tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và cắt đoạn thằng AC. Chứng minh các giao tuyến của (α) với hình chóp tạo thành một tam giác đều.

Xem đáp án » 12/07/2024 2,225

Câu 6:

Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).

Cho tứ diện ABCD có E, F, H lần lượt là trung điểm của AB, AC, AD. Chứng minh (EFH) // (BCD).  (ảnh 1)

Xem đáp án » 11/07/2024 2,027

Câu 7:

b) Gọi E là trung điểm của AB và F là một điểm thuộc ON. Chứng minh EF song song với (SBC).

Xem đáp án » 12/07/2024 1,762

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn