Câu hỏi:
12/07/2024 3,438
Cho hình hộp ABCD.A’B’C’D’và một mặt phẳng (α) cắt các mặt của hình hộp theo các giao tuyến MN, NP, PQ, QR, RS, SM như Hình 18. Chứng minh các cặp cạnh đối của lục giác MNPQRS song song với nhau.
Cho hình hộp ABCD.A’B’C’D’và một mặt phẳng (α) cắt các mặt của hình hộp theo các giao tuyến MN, NP, PQ, QR, RS, SM như Hình 18. Chứng minh các cặp cạnh đối của lục giác MNPQRS song song với nhau.

Quảng cáo
Trả lời:
+) Ta có: (ABCD) // (A’B’C’D’)
(α) ∩ (ABCD) = MN
(α) ∩ (A’B’C’D’) = QR
⇒ MN // QR.
+) Ta có: (AA’D’D) // (BB’C’C)
(α) ∩ (AA’D’D) = MS
(α) ∩ (BB’C’C) = PQ
⇒ MS // PQ.
+) Ta có: (AA’B’B) // (DD’C’C)
(α) ∩ (AA’B’B) = NP
(α) ∩ (DD’C’C) = SR
⇒ NP // SR.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là giao điểm của hai đường chéo AC và BD, O’ là giao điểm của A’C’ và B’D’, I là giao điểm của AC’ và A’C.
Tứ giác AA’C’C là hình bình hành có I là trung điểm của A’C và I cũng là trung điểm của AC’.
+) Trong tam giác BA’D có: G1 là trọng tâm tam giác và A’O là đường trung tuyến nên G1 ∈ A’O thỏa mãn A’G1 = A’O.
+) Trong tam giác B’CD’ có: G2 là trọng tâm tam giác và CO’ là đường trung tuyến nên G2 ∈ CO’ thỏa mãn CG2 = CO’.
+) Trong tam giác A’AC có G1 ∈ A’O thỏa mãn A’G1 = A’O nên G1 là trọng tâm tam giác AA’C nên AG1 = AI mà I là trung điểm của AC thì AI = AC, suy ra AG1 = AC.
+) Tương tự trong tam giác A’CC’, có: AG2 = AC.
Vì vậy G1G2 = AC.
Lời giải
+) Ta có:
(AA’B’B) // (DD’C’C)
(Q) ∩ (AA’B’B) = A’B’
(Q) ∩ (DD’C’C) = D’C’
⇒ A’B’ // D’C’ (1).
+) Tương tự ta có:
(AA’D’D) // (BB’C’C)
(Q) ∩ (AA’D’D) = A’D’
(Q) ∩ (BB’C’C) = B’C’
⇒ A’D’ // B’C’ (2).
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
Gọi O và O’ lần lượt là tâm của các hình bình hành ABCD và A’B’C’D’ nên O là trung điểm của AC và BD và O’ là trung điểm của A’C’ và B’D’.
+) Xét tứ giác ACC’A’, có: CC’ // AA’ nên ACC’A’ là hình thang, O là trung điểm của AC và O’ là trung điểm của A’C’ nên OO’ là đường trung bình của hình thang suy ra: (1).
+) Xét tứ giác BB’D’D, có: BB’ // DD’ nên BB’D’D là hình thang, O là trung điểm của BD và O’ là trung điểm của B’D’ nên OO’ là đường trung bình của hình thang suy ra: (2).
Từ (1) và (2) suy ra AA’ + CC’ = BB’ + DD’.

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.