Câu hỏi:

11/07/2024 942

Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’.

a) Chứng minh (CBE) // (ADF).

Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (chỉ từ 110k).

Mua bộ đề Hà Nội Mua bộ đề Tp. Hồ Chí Minh Mua đề Bách Khoa

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’. a) Chứng minh (CBE) // (ADF).Cho hai hình vuông ABCD và ABEF ở trong hai mặt phẳng khác nhau. Trên các đường chéo AC và BF lần lượt lấy các điểm M, N sao cho AM = BN. Các đường thẳng song song với AB vẽ từ M, N lần lượt cắt AD, AF tại M’, N’. a) Chứng minh (CBE) // (ADF). (ảnh 1)

a) Ta có: BE // AF (ABEF là hình vuông) mà AF (ADF) nên BE // (ADF).

BC // AD (ABCD là hình vuông) mà AD (ADF) nên BC // (ADF)

Mặt khác BE, BC cắt nhau tại B và nằm trong mặt phẳng (CBE)

Vì vậy (CBE) // (ADF).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình hộp ABCD.A’B’C’D’. Gọi G1 và G2 lần lượt là trọng tâm của hai tam giác BDA’ và B’D’C. Chứng minh G1 và G2 chia đoạn AC’ thành ba phần bằng nhau.

Xem đáp án » 12/07/2024 12,483

Câu 2:

Trong mặt phẳng (P) cho hình bình hành ABCD. Ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với (P) lần lượT đi qua các điểm A, B, C, D. Một mặt phẳng (Q) cắt bốn nửa đường thẳng nói trên tại A’, B’, C’, D’. Chứng minh rằng:

AA’ + CC’ = BB’ + DD’.

Xem đáp án » 12/07/2024 10,334

Câu 3:

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).

a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.

Để làm một khung lồng đèn kéo quân hình lăng trụ lục giác ABCDEF.A’B’C’D’E’F’, Bình gắn hai thanh tre A1D1, F1C1 song song với mặt phẳng đáy và cắt nhau tại O1 (Hình 19).  a) Xác định giao tuyến của mp(A1D1, F1C1) với các mặt bên của lăng trụ.  (ảnh 1)

Xem đáp án » 12/07/2024 9,598

Câu 4:

Cho hình chóp S.ABCD, đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo. Gọi M, N lần lượt là trung điểm của SA, SD.

a) Chứng minh rằng (OMN) // (SBC).

Xem đáp án » 12/07/2024 9,464

Câu 5:

Cho hình chóp S.ABCD với đáy ABCD là hình bình hành có O là giao điểm của hai đường chéo, tam giác SBD là tam giác đều. Một mặt phẳng (α) di động song song với mặt phẳng (SBD) và cắt đoạn thằng AC. Chứng minh các giao tuyến của (α) với hình chóp tạo thành một tam giác đều.

Xem đáp án » 12/07/2024 4,755

Câu 6:

Cho hình chóp S.ABC có SA = 9, SB = 12, SC = 15. Trên cạnh SA lấy điểm M, N sao cho SM = 4, MN = 3, NA = 2. Vẽ hai mặt phẳng song song với mặt phẳng (ABC), lần lượt đi qua M, N, cắt SB theo thứ tự tại M’, N’ và cắt SC theo thứ tự tại M”, N”. Tính độ dài các đoạn thẳng SM’, M’N’, M”N”, N”C.

Xem đáp án » 11/07/2024 4,248

Câu 7:

b) Gọi E là trung điểm của AB và F là một điểm thuộc ON. Chứng minh EF song song với (SBC).

Xem đáp án » 12/07/2024 3,647

Bình luận


Bình luận