Quảng cáo
Trả lời:
b) Trong mặt phẳng (ABF) có: NN’ // AD nên (định lí Thales).
Trong mặt phẳng (ADC) có: MM’ // DC nên (định lí Thales).
Ta có hình vuông ABCD và hình vuông ABEF là hai hình vuông bằng nhau vì cùng chung cạnh AB nên AC = BF mà AM = BN nên suy ra .
Trong tam giác ADF, có nên M’N’ // DF (theo định lí Thales đảo).
Mà DF ⊂ (DEF) nên M’N’ // (DEF).
Ta có: MM’ // AD // DC (gt) mà DC ⊂ (DEF) nên MM’ // (DEF)
Ta lại có M’N’ và MM’ là hai đường thẳng cắt nhau tại M’ và cùng nằm trong (MNN’M’).
Vì vậy (DEF) // (MNN’M’).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Gọi O là giao điểm của hai đường chéo AC và BD, O’ là giao điểm của A’C’ và B’D’, I là giao điểm của AC’ và A’C.
Tứ giác AA’C’C là hình bình hành có I là trung điểm của A’C và I cũng là trung điểm của AC’.
+) Trong tam giác BA’D có: G1 là trọng tâm tam giác và A’O là đường trung tuyến nên G1 ∈ A’O thỏa mãn A’G1 = A’O.
+) Trong tam giác B’CD’ có: G2 là trọng tâm tam giác và CO’ là đường trung tuyến nên G2 ∈ CO’ thỏa mãn CG2 = CO’.
+) Trong tam giác A’AC có G1 ∈ A’O thỏa mãn A’G1 = A’O nên G1 là trọng tâm tam giác AA’C nên AG1 = AI mà I là trung điểm của AC thì AI = AC, suy ra AG1 = AC.
+) Tương tự trong tam giác A’CC’, có: AG2 = AC.
Vì vậy G1G2 = AC.
Lời giải
+) Ta có:
(AA’B’B) // (DD’C’C)
(Q) ∩ (AA’B’B) = A’B’
(Q) ∩ (DD’C’C) = D’C’
⇒ A’B’ // D’C’ (1).
+) Tương tự ta có:
(AA’D’D) // (BB’C’C)
(Q) ∩ (AA’D’D) = A’D’
(Q) ∩ (BB’C’C) = B’C’
⇒ A’D’ // B’C’ (2).
Từ (1) và (2) suy ra tứ giác A’B’C’D’ là hình bình hành.
Gọi O và O’ lần lượt là tâm của các hình bình hành ABCD và A’B’C’D’ nên O là trung điểm của AC và BD và O’ là trung điểm của A’C’ và B’D’.
+) Xét tứ giác ACC’A’, có: CC’ // AA’ nên ACC’A’ là hình thang, O là trung điểm của AC và O’ là trung điểm của A’C’ nên OO’ là đường trung bình của hình thang suy ra: (1).
+) Xét tứ giác BB’D’D, có: BB’ // DD’ nên BB’D’D là hình thang, O là trung điểm của BD và O’ là trung điểm của B’D’ nên OO’ là đường trung bình của hình thang suy ra: (2).
Từ (1) và (2) suy ra AA’ + CC’ = BB’ + DD’.

Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.