Câu hỏi:

13/07/2024 11,021

Trong Ví dụ 4 xác định giao tuyến của hai mặt phẳng (SAC) và (SBD).
Media VietJack

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Ta có: S (SAC) và S (SBD)

Do đó giao tuyến của hai mặt phẳng (SAC) và (SBD) đi qua điểm S.

Ta lại có: O AC mà AC (SAC) nên O (SAC);

                O BD mà BD (SBD) nên O (SBD).

Do đó giao tuyến của hai mặt phẳng (SAC) và (SBD) đi qua điểm O.

Khi đó giao tuyến của hai mặt phẳng (SAC) và (SBD) chính là đường thẳng SO.

Vậy (SAC) ∩ (SBD) = SO.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M SA mà SA (SAB) nên M (SAB);

                M CM mà CM (CMN) nên M (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB (SAB);

                CN (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C SC mà SC (SBC);

               C CM mà CM (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB (SBC);

                EM (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P (ABC)

Lại có P MN mà MN (BMN) nên P (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B (BMN) và B (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay