Câu hỏi:
13/07/2024 16,805Cho hình tứ diện ABCD. Gọi I là trung điểm cạnh CD. Gọi M, N lần lượt là trọng tâm các tam giác BCD, CDA.
a) Chứng minh rằng các điểm M, N thuộc mặt phẳng (ABI).
b) Gọi G là giao điểm của AM và BN. Chứng minh rằng: \(\frac{{GM}}{{GA}} = \frac{{GN}}{{GB}} = \frac{1}{3}\).
c) Gọi P, Q lần lượt là trọng tâm các tam giác DAB, ABC. Chứng minh rằng các đường thẳng CP, DQ cùng đi qua điểm G và \(\frac{{GP}}{{GC}} = \frac{{GQ}}{{GD}} = \frac{1}{3}\).
Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Lời giải
a)
+) Xét tam giác BCD có: I là trung điểm của CD nên BI là đường trung tuyến.
Mà M là trọng tâm tam giác BCD nên BI đi qua M.
Do đó M ∈ BI.
Lại có AI ⊂ (ABI) nên M ∈ (ABI).
+) Xét tam giác ACD có: I là trung điểm của CD nên AI là đường trung tuyến.
Mà N là trọng tâm tam giác ACD nên AI đi qua N.
Do đó N ∈ AI.
Lại có BI ⊂ (ABI) nên N ∈ (ABI).
b) Trong DBCD có M là trọng tâm tam giác nên \(\frac{{MI}}{{BI}} = \frac{1}{3}\).
Trong DACD có N là trọng tâm tam giác nên \(\frac{{NI}}{{AI}} = \frac{1}{3}\).
Xét DABI có: \(\frac{{NI}}{{AI}} = \frac{{MI}}{{BI}} = \frac{1}{3}\) nên MN // AB (theo định lí Thalès đảo).
Xét DABI và MN // AB, theo hệ quả định lí Thalès ta có \(\frac{{MN}}{{AB}} = \frac{{NI}}{{AI}} = \frac{{MI}}{{BI}} = \frac{1}{3}\).
Xét DABG và MN // AB, theo hệ quả định lí Thalès ta có \(\frac{{GM}}{{GA}} = \frac{{GN}}{{GB}} = \frac{{MN}}{{AB}} = \frac{1}{3}\).
c)
• Gọi G’ là giao điểm của AM và CP; G’’ là giao điểm của AM và DQ.
Chứng minh tương tự câu b, ta có: \(\frac{{G'M}}{{G'A}} = \frac{{G'P}}{{G'C}} = \frac{{PM}}{{AC}} = \frac{1}{3}\) và \(\frac{{G''M}}{{G''A}} = \frac{{G''Q}}{{G''D}} = \frac{{QM}}{{AD}} = \frac{1}{3}\)
Do đó \(\frac{{GM}}{{GA}} = \frac{{G'M}}{{G'A}} = \frac{{G''M}}{{G''A}} = \frac{1}{3}\).
Mà G, G’, G’’ cùng nằm trên AM nên G ≡ G’ ≡ G’’.
Vậy các đường thẳng CP, DQ cùng đi qua điểm G.
• Xét tam giác ABC, kẻ đường trung tuyến AE (E ∈ BC).
Ta có: Q là trọng tâm DABC nên \(\frac{{AQ}}{{AE}} = \frac{2}{3}\).
Xét tam giác ABD, kẻ đường trung tuyến AF (F ∈ BD).
Ta có: P là trọng tâm DABD nên \(\frac{{AP}}{{AF}} = \frac{2}{3}\).
+) Trong mặt phẳng (AEF), có: \(\frac{{AQ}}{{AE}} = \frac{{AP}}{{AF}} = \frac{2}{3}\) nên PQ // EF (định lí Thalès đảo)
Mà EF // CD (đường trung bình tam giác BCD).
Suy ra PQ // CD
Theo hệ quả định lí Thalès ta có: \(\frac{{GP}}{{GC}} = \frac{{GQ}}{{GD}} = \frac{{QP}}{{CD}} = \frac{{QP}}{{2EF}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD.
a) Xác định giao điểm của mặt phẳng (CMN) với các đường thẳng AB, SB.
b) Xác định giao tuyến của mặt phẳng (CMN) với mỗi mặt phẳng (SAB) và (SBC).
Câu 2:
Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho MA = 2MS, NS = 2NC.
a) Xác định giao điểm của MN với mặt phẳng (ABC).
b) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABC).
Câu 3:
Cho hình chóp tứ giác S.ABCD có đáy không là hình thang. Gọi M là trung điểm của SA.
a) Xác định giao điểm của CD với mặt phẳng (SAB).
b) Xác định giao tuyến của hai mặt phẳng (SAB) và (SCD).
c) Xác định giao tuyến của hai mặt phẳng (MCD) và (SBC).
Câu 4:
Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho \(\frac{{AM}}{{AB}} = \frac{1}{3},\frac{{AN}}{{AD}} = \frac{2}{3},\frac{{BP}}{{BC}} = \frac{3}{4}\).
a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP).
b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.
Câu 5:
Câu 6:
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
10 Bài tập Tổng của cấp số nhân lùi vô hạn và các bài toán liên quan (có lời giải)
10 Bài tập Trung vị, tứ phân vị của mẫu số liệu ghép nhóm và ý nghĩa (có lời giải)
về câu hỏi!