Câu hỏi:

13/07/2024 11,532

Cho tứ diện ABCD. Các điểm M, N, P lần lượt thuộc các cạnh AB, AD, BC sao cho \(\frac{{AM}}{{AB}} = \frac{1}{3},\frac{{AN}}{{AD}} = \frac{2}{3},\frac{{BP}}{{BC}} = \frac{3}{4}\).

a) Xác định E, F lần lượt là giao điểm của các đường thẳng AC, BD với mặt phẳng (MNP).

b) Chứng minh rằng các đường thẳng NE, PF và CD cùng đi qua một điểm.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a)

+) Trong mặt phẳng (ABC), gọi giao điểm của MP với AC là E.

Mà MP (MNP) nên (MNP) ∩ AC = {E}.

+) Trong mặt phẳng (ABD), gọi giao điểm của MN với BD là F.

Mà MP (MNP) nên (MNP) ∩ BD = {F}.

b) • Ta có: N AD, mà AD (ACD) nên N (ACD).

Lại có N (MNP)

Do đó N là giao điểm của (ACD) và (MNP).

Mặt khác: MP ∩ AC = {E};

                 MP (MNP);

                 AC (ACD).

Do đó E là giao điểm của (ACD) và (MNP).

Suy ra NE = (MNP) ∩ (ACD).

Trong mặt phẳng (ACD), nối NE cắt CD tại I.

Khi đó I CD và I NE (MNP)

• Ta có: P BC, mà BC (BCD) nên P (BCD)

Lại có P (MNP)

Do đó P là giao điểm của (BCD) và (MNP).

Mặt khác: MN ∩ BD = {F}.

                 MN (MNP);

                 BD (BCD) .

Do đó F là giao điểm của (BCD) và (MNP).

Suy ra PF = (BCD) ∩ (MNP).

Trong mặt phẳng (BCD), gọi giao điểm của CD với PF là I.

Khi đó I CD, mà CD (ACD)

            I PF, mà PF (MNP)

Suy ra I là giao điểm của hai mặt phẳng (MNP) và (ACD).

Hay I nằm trên giao tuyến NE của (MNP) và (ACD).

Do đó I NE.

Vậy ba đường thẳng NE, PF, CD cùng đi qua điểm I.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M SA mà SA (SAB) nên M (SAB);

                M CM mà CM (CMN) nên M (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB (SAB);

                CN (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C SC mà SC (SBC);

               C CM mà CM (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB (SBC);

                EM (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P (ABC)

Lại có P MN mà MN (BMN) nên P (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B (BMN) và B (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay