Câu hỏi:

13/07/2024 44,334

Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là trung điểm của các cạnh SA và AD.

a) Xác định giao điểm của mặt phẳng (CMN) với các đường thẳng AB, SB.

b) Xác định giao tuyến của mặt phẳng (CMN) với mỗi mặt phẳng (SAB) và (SBC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a)

Media VietJack

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M SA mà SA (SAB) nên M (SAB);

                M CM mà CM (CMN) nên M (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB (SAB);

                CN (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C SC mà SC (SBC);

               C CM mà CM (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB (SBC);

                EM (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P (ABC)

Lại có P MN mà MN (BMN) nên P (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B (BMN) và B (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.

Mà AB (SAB)

Do đó CD ∩ (SAB) = {N}.

b) Ta có: AB ∩ CD = {N};

               AB (SAB);

               CD (SCD)

Do đó N là giao điểm của (SAB) và (SCD).

Lại có: S (SAB) và S (SCD).

Nên S là giao điểm của (SAB) và (SCD).

Vì vậy (SAB) ∩ (SCD) = SN.

c) Ta có: C (SBC) và C (MCD).

Do đó C là giao điểm của (SBC) và (MCD).

Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.

Mà MN (MCD) và SB (SBC)  

Suy ra Q là giao điểm của (SBC) và (MCD).

Vì vậy (SBC) ∩ (MCD) = CQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP