Câu hỏi:

13/07/2024 32,174

Cho hình chóp S.ABC. Các điểm M, N lần lượt thuộc các cạnh SA, SC sao cho MA = 2MS, NS = 2NC.

a) Xác định giao điểm của MN với mặt phẳng (ABC).

b) Xác định giao tuyến của mặt phẳng (BMN) với mặt phẳng (ABC).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

a) Trong mặt phẳng (SAC), gọi giao điểm của MN và AC là P.

Mà AC (SAC)

Do đó MN ∩ (ABC) = {P}.

b) Ta có MN ∩ (ABC) = {P} nên P (ABC)

Lại có P MN mà MN (BMN) nên P (BMN)

Do đó P là giao điểm của (BMN) và (ABC).

Mặt khác: B (BMN) và B (ABC).

Do đó B là giao điểm của (BMN) và (ABC).

Vì vậy (BMN) ∩ (ABC) = BP.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

+) Trong mặt phẳng (ABCD): Gọi giao điểm của AB với NC là E.

Mà NC (CMN)

Suy ra: (CMN) ∩ AB = {E}.

+) Trong mặt phẳng (SAB): Kéo dài EM cắt AB tại F.

Mà EM (CMN)

Suy ra (SAB) ∩ EM = {F}.

b)

+) Ta có: M SA mà SA (SAB) nên M (SAB);

                M CM mà CM (CMN) nên M (CMN).

Do đó M là giao điểm của hai mặt phẳng (SAB) và (CMN).

Ta lại có: AB ∩ CN = {E};

                AB (SAB);

                CN (CMN).

Do đó E là giao điểm của hai mặt phẳng (SAB) và (CMN).

Vì vậy (SAB) ∩ (CMN) = EM.

+) Ta có: C SC mà SC (SBC);

               C CM mà CM (CMN).

Do đó C là giao điểm của hai mặt phẳng (SBC) và (CMN).

Ta lại có: SB ∩ EM = {F};

                SB (SBC);

                EM (CMN).

Do đó F là giao điểm của hai mặt phẳng (SBC) và (CMN).

Vì vậy (SBC) ∩ (CMN) = CF.

Lời giải

Lời giải

Media VietJack

a) Trong mặt phẳng (ABCD) ta có: gọi giao điểm của AB và CD là N.

Mà AB (SAB)

Do đó CD ∩ (SAB) = {N}.

b) Ta có: AB ∩ CD = {N};

               AB (SAB);

               CD (SCD)

Do đó N là giao điểm của (SAB) và (SCD).

Lại có: S (SAB) và S (SCD).

Nên S là giao điểm của (SAB) và (SCD).

Vì vậy (SAB) ∩ (SCD) = SN.

c) Ta có: C (SBC) và C (MCD).

Do đó C là giao điểm của (SBC) và (MCD).

Trong mặt phẳng (SAB), gọi Q là giao điểm của MN và SB.

Mà MN (MCD) và SB (SBC)  

Suy ra Q là giao điểm của (SBC) và (MCD).

Vì vậy (SBC) ∩ (MCD) = CQ.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP