Câu hỏi:
13/07/2024 2,020
Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).

Thế nào là đường thẳng song song với mặt phẳng trong không gian?
Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).
Thế nào là đường thẳng song song với mặt phẳng trong không gian?
Quảng cáo
Trả lời:
Lời giải
Sau bài học này, chúng ta sẽ giải quyết được câu hỏi trên như sau:
Đường thẳng song song với mặt phẳng trong không gian là đường thẳng song song với một đường thẳng khác nằm trong mặt phẳng đó.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
a) Ta có: S ∈ (SAB) và S ∈ (SCD) nên S là giao điểm của (SAB) và (SCD).
Lại có: AB // CD (do ABCD là hình bình hành);
AB ⊂ (SAB);
CD ⊂ (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.
b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = \(\frac{1}{2}\)BD.
Xét DABC có N là trọng tâm của tam giác nên \(\frac{{BN}}{{BO}} = \frac{2}{3}\) do đó \(\frac{{BN}}{{BD}} = \frac{{BN}}{{2BO}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}\).
Theo bài, AD = 3AM nên \(\frac{{AM}}{{AD}} = \frac{1}{3}\)
Trong mặt phẳng (ABCD), xét DABD có \(\frac{{AM}}{{AD}} = \frac{{BN}}{{BD}} = \frac{1}{3}\)
Do đó MN // AB (theo định lí Thalès đảo)
Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.
Lại có CD ⊂ (SCD)
Do đó MN // (SCD).
• Gọi I là trung điểm của SA.
Xét DSAB có G là trọng tâm của tam giác nên \(\frac{{BG}}{{BI}} = \frac{2}{3}\)
Trong (BIO), xét DBIO có: \(\frac{{BG}}{{BI}} = \frac{{BN}}{{BO}} = \frac{2}{3}\)
Suy ra GN // IO (theo định lí Thalès đảo)
Mà IO ⊂ (SAC) nên GN // (SAC).
Lời giải
Lời giải
• Ta có: S ∈ (SAD) và S ∈ (SBC) nên S là giao điểm của (SAD) và (SBC).
Lại có: AD // BC (do ABCD là hình bình hành);
AD ⊂ (SAD);
BC ⊂ (SBC).
Do đó giao tuyến d của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và song song với AD, BC.
• Vì M, N lần lượt là trung điểm của AB và CD nên MN là đường trung bình
Do đó MN // BC // AD.
Ta có: MN // BC mà BC ⊂ (SBC) nên MN // (SBC);
MN // AD mà AD ⊂ (SAD) nên MN // (SAD).
Có: MN // (SBC);
MN // (SAD);
(SAD) ∩ (SBC) = d
Suy ra MN // d.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.