Câu hỏi:

01/08/2023 442

a) Trong Hình 44, thanh barrier và mặt phẳng gợi nên hình ảnh đường thẳng d và mặt phẳng (P). Cho biết đường thẳng d và mặt phẳng (P) có điểm chung hay không.

Media VietJack

b) Cho đường thẳng d và mặt phẳng (P). Hãy cho biết các khả năng có thể xảy ra đối với số điểm chung của d và (P).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

a) Trong Hình 44 đường thẳng d và mặt phẳng (P) không có điểm chung.

b)

Media VietJack

Ở Hình 45a): Đường thẳng d nằm trong mặt phẳng (P) nên có vô số điểm chung.

Ở Hình 45b): Đường thẳng d cắt mặt phẳng (P) tại một điểm nên có 1 điểm chung.

Ở Hình 45c): Đường thẳng d song song với mặt phẳng (P) nên không có điểm chung với nhau.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Media VietJack

a) Ta có: S (SAB) và S (SCD) nên S là giao điểm của (SAB) và (SCD).

Lại có: AB // CD (do ABCD là hình bình hành);

            AB (SAB);

            CD (SCD).

Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng d đi qua S và song song với AB, CD.

b) • Gọi O là tâm của hình bình hành, khi đó BO = OD = \(\frac{1}{2}\)BD.

Xét DABC có N là trọng tâm của tam giác nên \(\frac{{BN}}{{BO}} = \frac{2}{3}\) do đó \(\frac{{BN}}{{BD}} = \frac{{BN}}{{2BO}} = \frac{1}{2}.\frac{2}{3} = \frac{1}{3}\).

Theo bài, AD = 3AM nên \(\frac{{AM}}{{AD}} = \frac{1}{3}\)

Trong mặt phẳng (ABCD), xét DABD có \(\frac{{AM}}{{AD}} = \frac{{BN}}{{BD}} = \frac{1}{3}\)

Do đó MN // AB (theo định lí Thalès đảo)

Trong mặt phẳng (ABCD) có: AB // CD và MN // AB nên MN // CD.

Lại có CD (SCD)

Do đó MN // (SCD).

• Gọi I là trung điểm của SA.

Xét DSAB có G là trọng tâm của tam giác nên \(\frac{{BG}}{{BI}} = \frac{2}{3}\)

Trong (BIO), xét DBIO có: \(\frac{{BG}}{{BI}} = \frac{{BN}}{{BO}} = \frac{2}{3}\)

Suy ra GN // IO (theo định lí Thalès đảo)

Mà IO (SAC) nên GN // (SAC).

Lời giải

Lời giải

Media VietJack

• Ta có: S (SAD) và S (SBC) nên S là giao điểm của (SAD) và (SBC).

Lại có: AD // BC (do ABCD là hình bình hành);

            AD (SAD);

            BC (SBC).

Do đó giao tuyến d của hai mặt phẳng (SAD) và (SBC) là đường thẳng đi qua S và song song với AD, BC.

• Vì M, N lần lượt là trung điểm của AB và CD nên MN là đường trung bình

Do đó MN // BC // AD.

Ta có: MN // BC mà BC (SBC) nên MN // (SBC);

           MN // AD mà AD (SAD) nên MN // (SAD).

Có: MN // (SBC);

       MN // (SAD);

       (SAD) ∩ (SBC) = d

Suy ra MN // d.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay