CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

a)

Media VietJack

Trong mp(SAB), xét DSAB có M, N lần lượt là trung điểm của SA, SB nên MN là đường trung bình của tam giác

Do đó MN // AB.

Mà AB // CD (giả thiết) nên MN // CD.

Lại có CD (SCD) nên MN // (SCD).

b)

Media VietJack

Theo câu a, MN là đường trung bình của DSAB nên MN = \(\frac{1}{2}\)AB

Mà AB = 2CD hay CD = \(\frac{1}{2}\)AB

Do đó MN = CD.

Xét tứ giác MNCD có: MN // CD và MN = CD nên MNCD là hình bình hành

Suy ra DM // CN

Mà CN (SBC) nên DM // (SBC).

c)

Media VietJack

• Trong mp(ABCD), gọi O là giao điểm của AC và BD.

Do AB // CD, theo hệ quả định lí Thalès ta có: \(\frac{{OB}}{{DO}} = \frac{{AB}}{{CD}} = \frac{2}{1}\)

Suy ra \(\frac{{OB}}{{DO + OB}} = \frac{2}{{1 + 2}}\) hay \(OB\)\(\frac{{OB}}{{DB}} = \frac{2}{3}\)

• Trong mp(SDB), xét DSDB có \(\frac{{SI}}{{SD}} = \frac{{OB}}{{DB}} = \frac{2}{3}\) nên IO // SB (theo định lí Thalès đảo)

Mà IO (AIC) nên SB // (AIC).

Lời giải

Lời giải

a)

Media VietJack

Trong mp(CDHK), qua K vẽ đường thẳng song song với CD, cắt DH tại N.

Trong mp(BCKF), qua K vẽ đường thẳng song song với BC, cắt BF tại P.

Ta có: NK // CD, mà CD (ACBD) nên NK // (ABCD).

           KP // BC, mà BC (ACBD) nên KP // (ABCD).

           NK, KP cắt nhau tại K trong mp(NPK).

Do đó (NPK) // (ABCD).

Khi đó mp(R) qua K và song song với (ABCD) chính là mp(NPK).

Trong mp(ADHE), qua N vẽ đường thẳng song song với AD, cắt AE tại Q.

Khi đó mp(R) là mp(NKPQ).

Vậy: (NKPQ) ∩ (ADHE) = QN;

         (NKPQ) ∩ (CDHK) = NK;

         (NKPQ) ∩ (BCKF) = KP;

         (NKPQ) ∩ (ABFE) = PQ.

b)

Media VietJack

Ta có: DH cắt NK tại N, mà NK (R) nên giao điểm của DH và (R) là điểm N.

Theo bài, I là giao điểm của DH và (R) nên điểm I và điểm N trùng nhau.

Tương tự ta cũng có điểm J trùng với điểm P.

Ta có: (ABCD) // (EFMH) và (R) // (ABCD) nên (EFMH) // (R) // (ABCD).

Lại có, hai cát tuyến FB, HD cắt ba mặt phẳng song song (EFMH), (R), (ABCD) lần lượt tại F, J, B và H, I, D nên theo định lí Thalès ta có: \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\).

Mặt khác, trong mp(CDKH), tứ giác CDIK có CK // DI (do CK // DH) và IK // CD

Do đó CDIK là hình bình hành, suy ra DI = CK = 40 cm.

Khi đó HI = DH – DI = 75 – 40 = 35 (cm).

Vì vậy, từ \(\frac{{FJ}}{{HI}} = \frac{{FB}}{{HD}}\) ta có: \(\frac{{FJ}}{{35}} = \frac{{60}}{{75}}\), suy ra \(FJ = \frac{{35.60}}{{75}} = 28\) (cm).

Vậy FJ = 28 cm.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay